Inkscape extensions for figure resizing and editing

Overview

Academic-Inkscape: Extensions for figure resizing and editing

This repository contains several Inkscape extensions designed for editing plots.

  1. Scale Plots: Changes the size or aspect ratio of a plot without modifying its text and ticks. Especially useful for assembling multi-panel figures.
  2. Flatten Plots: A utility that eliminates much of the structure generated by common vector graphics plotting programs. Makes editing much easier.
  3. The Homogenizer: Quickly sets uniform fonts, font sizes, and stroke widths in a selection.
  4. The Auto-Exporter: A program that will automatically export your SVG files to various formats and keep them updated.

All were written by David Burghoff at the University of Notre Dame. If you find it useful, tell your collegaues!

Installation

You must have the latest release version of Inkscape (1.0.2), and the extensions should be installed using the instructions provided here. Download all of these files, then copy them into the directory listed at Edit > Preferences > System: User extensions. After a restart of Inkscape, the group extensions will be available under Extensions > Academic.

Scale Plots

When dealing with vector graphics generated by plotting environments like Matlab and Matplotlib, resizing plots after the plot has been generated can be difficult. Generally, one wants to resize the lines and data of a plot while leaving text, ticks, and stroke widths unaffected. This is best done in the original program, but precludes quick modification.

For most plots, Scale Plots generates acceptable scalings with little effort. Lines and data are scaled while text and ticks are merely repositioned. The extension attempts to maintain the distance between axes and labels/tick labels by assigning a plot areaโ€”a bounding box that is calculated from the largest horizontal and vertical lines. Anything outside is assumed to be a label. (If your plot's axes do not have lines, temporarily add a box to define a plot area.)

Scale Plots example

To use:

  1. Run Flatten Plots on your plot to remove structure generated by the PDF/EPS/SVG exporting process.
  2. Place any objects that you wish to remain unscaled in a group.
  3. Select the elements of your plot and run Scale Plots.

Scale Plots has two modes. In Scaling Mode, the plot is scaled by a constant factor. In Matching Mode, the plot area is made to match the size of the first object you select. This can be convenient when assembling subfigures, as it allows you to match the size of one plot to another plot or to a template rectangle.

Advanced options

  1. If "Auto tick correct" is enabled, the extension assumes that any small horizontal or vertical lines near the edges of the plot area are ticks, and automatically leaves them unscaled.
  2. If a layer name is put into the "Scale-free layer" option, any elements on that layer will remain unscaled. This is basically the same thing as putting an object in a group, but can be easier if there are many such objects (e.g, if your plot has markers).

Flatten Plots

Flatten Plots is a useful utility that eliminates many of the difficulties that arise when plots are exported from common plotting programs.

  1. Deep ungroup: The Scale Plots utility uses grouping to determine when objects are to be kept together, so a deep ungroup is typically needed to remove any existing groupings initially. It also unlinks any clones.
  2. Apply text fixes: Applies a series of fixes to text described below (particularly useful for PDF/EPS text).
  3. Remove white rectangles: Removes any rectangles that have white fill and no stroke. Mostly for removing a plot's background.

Text fixes

  1. Split distant text: Depending on the renderer, it is often the case that the PDF/EPS printing process generates text implemented as a single text object. For example, all of the x-axis ticks might be one object, all of the y-axis ticks might be another, and the title and labels may be another. Internally, each letter is positioned independently. This looks fine, but causes issues when trying to scale or do anything nontrivial.

    drawing

  2. Repair shattered text: Similarly, text in PDFs is often 'shattered'โ€”its letters are positioned individually, so if you try to edit it you will get strange results. This option reverses that, although the tradeoff is that text may be slightly repositioned.

    drawing

  3. Replace missing fonts: Useful for imported documents whose original fonts are not installed on the current machine.

The Homogenizer

The Homogenizer is a utility that does what its name implies: it will set all of the fonts, font sizes, and stroke widths in a selection to the same value. This is most useful when assembling sub-figures, as it allows you to ensure that the whole figure has a uniform look.

Auto-Exporter

The Auto-Exporter is not technically an extension, it is a Python script meant to be run in the background as a daemon. If you frequently export your figures to other formats, you know that updating them whenever you change your figure is a nuisance. This program does it automatically: you specify a directory that the program monitors, and whenever any SVGs are changed, it automatically converts them to the formats you specify. Just select (a) the location where the Inkscape binary is installed, (b) what directory you would like it to watch, and (c) where you would like it to put the exports.

It is currently implemented as a Python script and requires at least Python 3.7. If someone would like to package it into a nice GUI and create executables, let me know.

You might also like...
(ICCV 2021) Official code of
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) ๐Ÿ‘š [Paper] ๐Ÿ‘– [Webpage] ๐Ÿ‘— [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Implements the training, testing and editing tools for
Implements the training, testing and editing tools for "Pluralistic Image Completion"

Pluralistic Image Completion ArXiv | Project Page | Online Demo | Video(demo) This repository implements the training, testing and editing tools for "

A large-scale face dataset for face parsing, recognition, generation and editing.
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

Core ML tools contain supporting tools for Core ML model conversion, editing, and validation.

Core ML Tools Use coremltools to convert machine learning models from third-party libraries to the Core ML format. The Python package contains the sup

Official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models.

GLIDE This is the official codebase for running the small, filtered-data GLIDE model from GLIDE: Towards Photorealistic Image Generation and Editing w

Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isnโ€™t it? Well, for humans this is an extremely e

Official implementation for
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Editing a Conditional Radiance Field
Editing a Conditional Radiance Field

Editing Conditional Radiance Fields Project | Paper | Video | Demo Editing Conditional Radiance Fields Steven Liu, Xiuming Zhang, Zhoutong Zhang, Rich

Disentangled Face Attribute Editing via Instance-Aware Latent Space Search, accepted by IJCAI 2021.

Instance-Aware Latent-Space Search This is a PyTorch implementation of the following paper: Disentangled Face Attribute Editing via Instance-Aware Lat

Comments
  • Working with multiple subfigures in a single layer

    Working with multiple subfigures in a single layer

    Hi there! Thanks for making an amazing extension - I've just discovered it, but I'm sure it'll become a dear companion!

    For my current workflow, I prepare all figures for a paper in the same file, but on separate layers. This means that figures containing multiple subfigures have a few groups within them. Currently, it seems that the flattener flattens to the top group, even if I select only select a single subgroup (i.e. all the subfigures become a single group). Is there a way (or could there be) of only doing the deep ungrouping from the chosen group and down?

    Thanks!

    opened by roaldarbol 7
  • Points not adjusting size

    Points not adjusting size

    Hi again, sorry to pile on. Please address these at your own pace. :-)

    It seems that the Scaling doesn't work well with markers such as points. Here's a simple raw example: Screenshot 2022-12-15 at 11 32 16

    And here's the scaled version of it, tried both with Scaling mode and Correction mode: Screenshot 2022-12-15 at 11 34 21

    There also seems to be something funky happening with the header, but I think that's simply because it's not rendered well in the original (I can create a separate issue if you'd like me to dig into it a bit).

    opened by roaldarbol 3
  • Flatten Plots does not fully support differential kerning

    Flatten Plots does not fully support differential kerning

    Text that has a dx component will not always be properly de-kerned. This is not a problem for anything imported by Inkscape, but SVG files generated by other programs may cause issues.

    x_and_dx.zip

    opened by burghoff 0
Releases(v1.2.28)
Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation (RA-L/ICRA 2020)

Aerial Depth Completion This work is described in the letter "Aerial Single-View Depth Completion with Image-Guided Uncertainty Estimation", by Lucas

ETHZ V4RL 70 Dec 22, 2022
Automatic Attendance marker for LMS Practice School Division, BITS Pilani

LMS Attendance Marker Automatic script for lazy people to mark attendance on LMS for Practice School 1. Setup Add your LMS credentials and time slot t

Nihar Bansal 3 Jun 12, 2021
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
RoMa: A lightweight library to deal with 3D rotations in PyTorch.

RoMa: A lightweight library to deal with 3D rotations in PyTorch. RoMa (which stands for Rotation Manipulation) provides differentiable mappings betwe

NAVER 90 Dec 27, 2022
CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image.

CoReNet CoReNet is a technique for joint multi-object 3D reconstruction from a single RGB image. It produces coherent reconstructions, where all objec

Google Research 80 Dec 25, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Company clustering with K-means/GMM and visualization with PCA, t-SNE, using SSAN relation extraction

RE results graph visualization and company clustering Installation pip install -r requirements.txt python -m nltk.downloader stopwords python3.7 main.

Jieun Han 1 Oct 06, 2022
Housing Price Prediction

This project aim was to predict the price of houses in the Boston area during the great financial crisis through regression, as well as classify houses into different quality categories according to

Florian Klement 1 Jan 27, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021.

inverse_attention This repository provides the official implementation of 'Learning to ignore: rethinking attention in CNNs' accepted in BMVC 2021. Le

Firas Laakom 5 Jul 08, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Pythonยฎ and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
List of awesome things around semantic segmentation ๐ŸŽ‰

Awesome Semantic Segmentation List of awesome things around semantic segmentation ๐ŸŽ‰ Semantic segmentation is a computer vision task in which we label

Dam Minh Tien 18 Nov 26, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023