Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model

Overview

Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model


About

This repository contains the code to replicate the synthetic experiment conducted in the paper "Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model" by Haruka Kiyohara, Yuta Saito, Tatsuya Matsuhiro, Yusuke Narita, Nobuyuki Shimizu, and Yasuo Yamamoto, which has been accepted to WSDM2022.

If you find this code useful in your research then please site:

@inproceedings{kiyohara2022doubly,
  author = {Kiyohara, Haruka and Saito, Yuta and Matsuhiro, Tatsuya and Narita, Yusuke and Shimizu, Nobuyuki and Yamamoto, Yasuo},
  title = {Doubly Robust Off-Policy Evaluation for Ranking Policies under the Cascade Behavior Model},
  booktitle = {Proceedings of the 15th International Conference on Web Search and Data Mining},
  pages = {xxx--xxx},
  year = {2022},
}

Dependencies

This repository supports Python 3.7 or newer.

  • numpy==1.20.0
  • pandas==1.2.1
  • scikit-learn==0.24.1
  • matplotlib==3.4.3
  • obp==0.5.2
  • hydra-core==1.0.6

Note that the proposed Cascade-DR estimator is implemented in Open Bandit Pipeline (obp.ope.SlateCascadeDoublyRobust).

Running the code

To conduct the synthetic experiment, run the following commands.

(i) run OPE simulations with varying data size, with the fixed slate size.

python src/main.py setting=n_rounds

(ii), (iii) run OPE simulations with varying slate size and policy similarities, with the fixed data size.

python src/main.py

Once the code is finished executing, you can find the results (squared_error.csv, relative_ee.csv, configuration.csv) in the ./logs/ directory. Lower value is better for squared error and relative estimation error (relative-ee).

Visualize the results

To visualize the results, run the following commands. Make sure that you have executed the above two experiments (by running python src/main.py and python src/main.py setting=default) before visualizing the results.

python src/visualize.py

Then, you will find the following figures (slate size (standard/cascade/independent).png, evaluation policy similarity (standard/cascade/independent).png, data size (standard/cascade/independent).png) in the ./logs/ directory. Lower value is better for the relative-MSE (y-axis).

reward structure Standard Cascade Independent
varying data size (n)
varying slate size (L)
varying evaluation policy similarity (λ)
Owner
Haruka Kiyohara
Tokyo Tech undergrads / interested in (offline) reinforcement learning and off-policy evaluation / intern at negocia, Hanjuku-kaso, Yahoo! Japan Research
Haruka Kiyohara
Code for Max-Margin Contrastive Learning - AAAI 2022

Max-Margin Contrastive Learning This is a pytorch implementation for the paper Max-Margin Contrastive Learning accepted to AAAI 2022. This repository

Anshul Shah 12 Oct 22, 2022
The FIRST GANs-based omics-to-omics translation framework

OmiTrans Please also have a look at our multi-omics multi-task DL freamwork 👀 : OmiEmbed The FIRST GANs-based omics-to-omics translation framework Xi

Xiaoyu Zhang 6 Dec 14, 2022
Model Quantization Benchmark

Introduction MQBench is an open-source model quantization toolkit based on PyTorch fx. The envision of MQBench is to provide: SOTA Algorithms. With MQ

500 Jan 06, 2023
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation

Elucidating Robust Learning with Uncertainty-Aware Corruption Pattern Estimation Introduction 📋 Official implementation of Explainable Robust Learnin

JeongEun Park 6 Apr 19, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022
Aalto-cs-msc-theses - Listing of M.Sc. Theses of the Department of Computer Science at Aalto University

Aalto-CS-MSc-Theses Listing of M.Sc. Theses of the Department of Computer Scienc

Jorma Laaksonen 3 Jan 27, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
A Lightweight Face Recognition and Facial Attribute Analysis (Age, Gender, Emotion and Race) Library for Python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Sefik Ilkin Serengil 5.2k Jan 02, 2023
deep-prae

Deep Probabilistic Accelerated Evaluation (Deep-PrAE) Our work presents an efficient rare event simulation methodology for black box autonomy using Im

Safe AI Lab 4 Apr 17, 2021
VisionKG: Vision Knowledge Graph

VisionKG: Vision Knowledge Graph Official Repository of VisionKG by Anh Le-Tuan, Trung-Kien Tran, Manh Nguyen-Duc, Jicheng Yuan, Manfred Hauswirth and

Continuous Query Evaluation over Linked Stream (CQELS) 9 Jun 23, 2022
AttentionGAN for Unpaired Image-to-Image Translation & Multi-Domain Image-to-Image Translation

AttentionGAN-v2 for Unpaired Image-to-Image Translation AttentionGAN-v2 Framework The proposed generator learns both foreground and background attenti

Hao Tang 530 Dec 27, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Code for the paper: Adversarial Training Against Location-Optimized Adversarial Patches. ECCV-W 2020.

Adversarial Training Against Location-Optimized Adversarial Patches arXiv | Paper | Code | Video | Slides Code for the paper: Sukrut Rao, David Stutz,

Sukrut Rao 32 Dec 13, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
DEMix Layers for Modular Language Modeling

DEMix This repository contains modeling utilities for "DEMix Layers: Disentangling Domains for Modular Language Modeling" (Gururangan et. al, 2021). T

Suchin 43 Nov 11, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023