Hierarchical Attentive Recurrent Tracking

Overview

Hierarchical Attentive Recurrent Tracking

This is an official Tensorflow implementation of single object tracking in videos by using hierarchical attentive recurrent neural networks, as presented in the following paper:

A. R. Kosiorek, A. Bewley, I. Posner, "Hierarchical Attentive Recurrent Tracking", NIPS 2017.

Installation

Install Tensorflow v1.1 and the following dependencies (using pip install -r requirements.txt (preferred) or pip install [package]):

  • matplotlib==1.5.3
  • numpy==1.12.1
  • pandas==0.18.1
  • scipy==0.18.1

Demo

The notebook scripts/demo.ipynb contains a demo, which shows how to evaluate tracker on an arbitrary image sequence. By default, it runs on images located in imgs folder and uses a pretrained model. Before running the demo please download AlexNet weights first (described in the Training section).

Data

  1. Download KITTI dataset from here. We need left color images and tracking labels.
  2. Unpack data into a data folder; images should be in an image folder and labels should be in a label folder.
  3. Resize all the images to (heigh=187, width=621) e.g. by using the scripts/resize_imgs.sh script.

Training

  1. Download the AlexNet weights:

    • Execute scripts/download_alexnet.sh or
    • Download the weights from here and put the file in the checkpoints folder.
  2. Run

     python scripts/train_hart_kitti.py --img_dir=path/to/image/folder --label_dir=/path/to/label/folder
    

The training script will save model checkpoints in the checkpoints folder and report train and test scores every couple of epochs. You can run tensorboard in the checkpoints folder to visualise training progress. Training should converge in about 400k iterations, which should take about 3 days. It might take a couple of hours between logging messages, so don't worry.

Evaluation on KITTI dataset

The scripts/eval_kitti.ipynb notebook contains the code necessary to prepare (IoU, timesteps) curves for train and validation set of KITTI. Before running the evaluation:

  • Download AlexNet weights (described in the Training section).
  • Update image and label folder paths in the notebook.

Citation

If you find this repo useful in your research, please consider citing:

@inproceedings{Kosiorek2017hierarchical,
   title = {Hierarchical Attentive Recurrent Tracking},
   author = {Kosiorek, Adam R and Bewley, Alex and Posner, Ingmar},
   booktitle = {Neural Information Processing Systems},
   url = {http://www.robots.ox.ac.uk/~mobile/Papers/2017NIPS_AdamKosiorek.pdf},
   pdf = {http://www.robots.ox.ac.uk/~mobile/Papers/2017NIPS_AdamKosiorek.pdf},
   year = {2017},
   month = {December}
}

License

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/.

Release Notes

Version 1.0

  • Original version from the paper. It contains the KITTI tracking experiment.
Owner
Adam Kosiorek
I'm a PhD student at the Oxford Robotics Institute. I work on Machine Learning for perception - I'm looking into external memory and attention for RNNs.
Adam Kosiorek
FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack

FCA: Learning a 3D Full-coverage Vehicle Camouflage for Multi-view Physical Adversarial Attack Case study of the FCA. The code can be find in FCA. Cas

IDRL 21 Dec 15, 2022
A particular navigation route using satellite feed and can help in toll operations & traffic managemen

How about adding some info that can quanitfy the stress on a particular navigation route using satellite feed and can help in toll operations & traffic management The current analysis is on the satel

Ashish Pandey 1 Feb 14, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
💡 Type hints for Numpy

Type hints with dynamic checks for Numpy! (❒) Installation pip install nptyping (❒) Usage (❒) NDArray nptyping.NDArray lets you define the shape and

Ramon Hagenaars 377 Dec 28, 2022
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Train Scene Graph Generation for Visual Genome and GQA in PyTorch >= 1.2 with improved zero and few-shot generalization.

Scene Graph Generation Object Detections Ground truth Scene Graph Generated Scene Graph In this visualization, woman sitting on rock is a zero-shot tr

Boris Knyazev 93 Dec 28, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Unofficial implementation of HiFi-GAN+ from the paper "Bandwidth Extension is All You Need" by Su, et al.

HiFi-GAN+ This project is an unoffical implementation of the HiFi-GAN+ model for audio bandwidth extension, from the paper Bandwidth Extension is All

Brent M. Spell 134 Dec 30, 2022
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Implementation for Homogeneous Unbalanced Regularized Optimal Transport

HUROT: An Homogeneous formulation of Unbalanced Regularized Optimal Transport. This repository provides code related to this preprint. This is an alph

Théo Lacombe 1 Feb 17, 2022
VIMPAC: Video Pre-Training via Masked Token Prediction and Contrastive Learning

This is a release of our VIMPAC paper to illustrate the implementations. The pretrained checkpoints and scripts will be soon open-sourced in HuggingFace transformers.

Hao Tan 74 Dec 03, 2022
Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC.

Repositorio de los Laboratorios de Análisis Numérico / Análisis Numérico I de FAMAF, UNC. Para los Laboratorios de la materia, vamos a utilizar el len

Luis Biedma 18 Dec 12, 2022
Lab course materials for IEMBA 8/9 course "Coding and Artificial Intelligence"

IEMBA 8/9 - Coding and Artificial Intelligence Dear IEMBA 8/9 students, welcome to our IEMBA 8/9 elective course Coding and Artificial Intelligence, t

Artificial Intelligence & Machine Learning (AI:ML Lab) @ HSG 1 Jan 11, 2022
Gradient Inversion with Generative Image Prior

Gradient Inversion with Generative Image Prior This repository is an implementation of "Gradient Inversion with Generative Image Prior", accepted to N

MLLab @ Postech 25 Jan 09, 2023