Deep Probabilistic Programming Course @ DIKU

Overview

Syllabus

Part I - Introduction to Deep Probabilistic Programming

Week Topic Exercise Links
1 Introduction to Bayesian Inference Read Pattern Recognition and Machine Learning (PRML), Sections 1.1-1.3, 1.5-1.6 & 2-2.3.4 (inclusive ranges), Intro to Bayesian updating paper, and Pyro paper.

Form up groups and ask a question for each chapter/paper you have read.
Pattern Recognition and Machine Learning

Bayesian Updating Paper

Pyro Paper
2 Variational Inference Read the Variational Inference paper and Pyro tutorials on Stochastic Variational Inference (SVI). Ask three questions about them.

Use Pyro’s Variational Inference support to implement the kidney cancer model. See worksheet and Bayesian Data Analysis 3rd Edition (BDA3) Section 2.7.
Variational Inference Paper

Worksheet

Bayesian Data Analysis

Pyro SVI tutorial: Part I and Part II

Pyro Website
3 Hamiltonian Monte Carlo Read paper on Hamiltonian Monte Carlo and blog post on gradient-based Markov Chain Monte Carlo (MCMC). Look at the source code for Mini-MC.

Ask a question each for HMC, the Mini-MC implementation and discrete variable marginalization.

Implement Bayesian Change-point model in Pyro using NUTS.
Hamiltonian Monte Carlo Paper

Gradient-based MCMC

Mini-MC implementation

Change-point model

Pyro NUTS Example
4 Hidden Markov Models and Discrete Variables. Read Paper on Hidden Markov Models and ask three questions about it.

Read Pyro tutorials on Discrete Variables and Gaussian Mixture Models.

Read Pyro Hidden Markov Model code example and describe in your own words what the different models do.

Add amino acid prediction output to the TorusDBN HMM and show that the posterior predictive distribution of the amino acids matches the one found in data.
Hidden Markov Models

Pyro Discrete Variables Tutorial

Pyro Gaussian Mixture Model Tutorial

Pyro Hidden Markov Model Example

TorusDBN

Optional: Epidemological Inference via HMC
5 Bayesian Regression Models Read PRML Chapter 3 on Linear Models.

Ask 3 questions about the chapter.

Read the Pyro tutorials on Bayesian Regression.

Solve the weather check exercise in the worksheet.
Pyro Bayesian Regression: Part I, Part II

Worksheet
6 Variational Auto-Encoders Read Variational Auto Encoders (VAE) foundations Chapters 1 & 2, and Pyro tutorial on VAE. Ask three questions about the paper and tutorial.

Implement Frey Faces model from VAE paper in Pyro. Rely on the existing VAE implementation (see tutorial link).
Variational Auto Encoders Foundations

Pyro Tutorial on VAE
7 Deep Generative Models Read one of these papers: Interpretable Representation VAE, Causal Effect VAE, Deep Markov Model or DRAW (one paper per group).

Try out the relevant Pyro or PyTorch implementation on your choice of relevant dataset which was not used in the paper.

Make a small (10 minute) presentation about the paper and your experiences with the implementation.
Deep Markov Model

Interpretable Representation VAE

Causal Effect VAE

DRAW

Part II - Deep Probabilistic Programming Project

The second part of the course concerns applying the techniques learned in the first part, as a project solving a practical problem. We have several types of projects depending on the interests of the student.

For those interested in boosting their CV and potentially getting a student job, we warmly recommend working with one of our industrial partners on a suitable probabilistic programming project. For those interested in working with a more academic-oriented project, we have different interesting problems in Computer Science and Biology.

Industrial Projects

Company Area Ideas
 Relion Shift-planning AI Shift planning based on worker availability, historical sales data, weather and holidays.

Employee satisfaction quantification based on previously assigned shifts.

Employee shift assignment based on wishes and need
Paperflow Invoice Recognition AI Talk to us
Hypefactors Media and Reputation Tracking AI Talk to us
‹Your Company› ‹Your Area› Interested in collaboration with our group? contact Ahmad Salim to hear more!

Academic Projects

Type Description Notes/Links
Computer Science Implement a predictive scoring model for your favourite sports game, inspired by FiveThirtyEight. FiveThirtyEight Methodology and Models
Computer Science  Implement a ranking system for your favourite video or board game, inspired by Microsoft TrueSkill. Microsoft TrueSkill Model

Can be implemented in Infer.NET using Expectation Propagation
Computer Science Use Inference Compilation in PyProb to implement a CAPTCHA breaker or a Spaceship Generator Inference Compilation and PyProb. You can use the experimental PyProb bindings for Java.

CAPTCHA breaking with Oxford CAPTCHA Generator.

Spaceship Generator
Computer Science Implement asterisk corrector suggested by XKCD XKCD #2337: Asterisk Correction
Computer Science Implement an inference compilation based program-testing tool like QuickCheck or SmallCheck Inference Compilation

QuickCheck

SmallCheck
Computer Science Magic: The Gathering, Automated Deck Construction. Design a model that finds a good deck automatically based on correlations in existing deck design. Ideas like card substitution models could be integrated too. Magic: The Gathering - Meta Site
Computer Science Use probabilistic programming to explore ideas for solving Eternity II (No $2 million prize anymore, but still interesting from a math point of view) Eternity II
Biology Auto-Encoders or Deep Markov Models for Protein Folding Deep Markov Model

Pyro Deep Markov Model
Biology Inference Compilation for Ancestral Reconstruction Inference Compilation and PyProb. Talk to us for details.
Biology Recurrent Causal Effect VAE for modelling mutations in proteins Talk to us for details.

Recommendations

  • Sometimes sampling can be slow on the CPU for complex models, so try using Google Colab and GPUs and see if that provides an improvement.

Acknowledgements

This course has been developed by Thomas Hamelryck and Ahmad Salim Al-Sibahi. Thanks to Ola Rønning for suggesting the Variational Auto Encoders Foundations paper instead of Auto-Encoding Variational Bayes which we originally proposed to read on week 3. Thanks to Richard Michael for testing out the course and provide us with valuable feedback on the content!

SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
The official implementation of Equalization Loss for Long-Tailed Object Recognition (CVPR 2020) based on Detectron2

Equalization Loss for Long-Tailed Object Recognition Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, Junjie Yan ⚠️ We re

Jingru Tan 197 Dec 25, 2022
MT3: Multi-Task Multitrack Music Transcription

MT3: Multi-Task Multitrack Music Transcription MT3 is a multi-instrument automatic music transcription model that uses the T5X framework. This is not

Magenta 867 Dec 29, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
[AAAI 2021] EMLight: Lighting Estimation via Spherical Distribution Approximation and [ICCV 2021] Sparse Needlets for Lighting Estimation with Spherical Transport Loss

EMLight: Lighting Estimation via Spherical Distribution Approximation (AAAI 2021) Update 12/2021: We release our Virtual Object Relighting (VOR) Datas

Fangneng Zhan 144 Jan 06, 2023
Torchlight2 lan game server tool - A message forwarding tool for Torchlight 2 lan game

Torchlight 2 Lan Game Server Tool A message forwarding tool for Torchlight 2 lan

Huaijun Jiang 3 Nov 01, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
Python project to take sound as input and output as RGB + Brightness values suitable for DMX

sound-to-light Python project to take sound as input and output as RGB + Brightness values suitable for DMX Current goals: Get one pixel working: Vary

Bobby Cox 1 Nov 17, 2021
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Self-supervised Multi-modal Hybrid Fusion Network for Brain Tumor Segmentation

JBHI-Pytorch This repository contains a reference implementation of the algorithms described in our paper "Self-supervised Multi-modal Hybrid Fusion N

FeiyiFANG 5 Dec 13, 2021