SelfRemaster: SSL Speech Restoration

Overview

SelfRemaster: Self-Supervised Speech Restoration

Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling

Demo

Setup

  1. Clone this repository: git clone https://github.com/Takaaki-Saeki/ssl_speech_restoration.git
  2. CD into this repository: cd ssl_speech_restoration
  3. Install python packages and download some pretrained models: ./setup.sh

Getting started

  • If you use default Japanese corpora
    • Download JSUT Basic5000 and JVS Corpus
    • Downsample them to 22.05 kHz and Place them under data/ as jsut_22k and jvs_22k
    • Place simulated low-quality data under ./data as jsut_22k-low and jvs_22k-low
  • Or you can use arbitrary datasets by modifying config files

Training

You can choose MelSpec or SourFilter models with --config_path option.
As shown in the paper, MelSpec model is of higher-quality.

Firstly you need to split the data to train/val/test and dump them by the following command.

python preprocess.py --config_path configs/train/${feature}/ssl_jsut.yaml

To perform self-supervised learning with dual learning, run the following command.

python train.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, refer to train.py.

Speech restoration

To perform speech restoration of the test data, run the following command.

python eval.py \
    --config_path configs/test/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, see eval.py.

Audio effect transfer

You can run a simple audio effect transfer demo using a model pretrained with real data.
Run the following command.

python aet_demo.py

Or you can customize the dataset or model.
You need to edit audio_effect_transfer.yaml and run the following command.

python aet.py \
    --config_path configs/test/melspec/audio_effect_transfer.yaml \
    --stage ssl-dual \
    --run_name aet_melspec_dual

For other options, see aet.py.

Pretrained models

See here.

Reproducing results

You can generate simulated low-quality data as in the paper with the following command.

python simulated_data.py \
    --in_dir ${input_directory (e.g., path to jsut_22k)} \
    --output_dir ${output_directory (e.g., path to jsut_22k-low)} \
    --corpus_type ${single-speaker corpus or multi-speaker corpus} \
    --deg_type lowpass

Then download the pretrained model correspond to the deg_type and run the following command.

python eval.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

Citation

@article{saeki22selfremaster,
  title={{SelfRemaster}: {S}elf-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling},
  author={T. Saeki and S. Takamichi and T. Nakamura and N. Tanji and H. Saruwatari},
  journal={arXiv preprint arXiv:2203.12937},
  year={2022}
}

Reference

Owner
Takaaki Saeki
Ph.D. Student @ UTokyo / Spoken Language Processing
Takaaki Saeki
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
้ ˜ๅŸŸใ‚’ๆŒ‡ๅฎšใ—ใ€ใ‚ญใƒผใ‚’ๅ…ฅๅŠ›ใ™ใ‚‹ใ“ใจใง็”ปๅƒใ‚’ไฟๅญ˜ใ™ใ‚‹ใƒ„ใƒผใƒซใงใ™ใ€‚ใ‚ฏใƒฉใ‚นๅˆ†้กž็”จใฎใƒ‡ใƒผใ‚ฟใ‚ปใƒƒใƒˆไฝœๆˆใ‚’ๆƒณๅฎšใ—ใฆใ„ใพใ™ใ€‚

image-capture-class-annotation ้ ˜ๅŸŸใ‚’ๆŒ‡ๅฎšใ—ใ€ใ‚ญใƒผใ‚’ๅ…ฅๅŠ›ใ™ใ‚‹ใ“ใจใง็”ปๅƒใ‚’ไฟๅญ˜ใ™ใ‚‹ใƒ„ใƒผใƒซใงใ™ใ€‚ ใ‚ฏใƒฉใ‚นๅˆ†้กž็”จใฎใƒ‡ใƒผใ‚ฟใ‚ปใƒƒใƒˆไฝœๆˆใ‚’ๆƒณๅฎšใ—ใฆใ„ใพใ™ใ€‚ Requirement OpenCV 3.4.2 or later Usage ๅฎŸ่กŒๆ–นๆณ•ใฏไปฅไธ‹ใงใ™ใ€‚ ่ตทๅ‹•ๅพŒใฏใƒžใ‚ฆใ‚นใ‚ฏใƒชใƒƒใ‚ฏ4

KazuhitoTakahashi 5 May 28, 2021
Code for the Paper: Alexandra Lindt and Emiel Hoogeboom.

Discrete Denoising Flows This repository contains the code for the experiments presented in the paper Discrete Denoising Flows [1]. To give a short ov

Alexandra Lindt 3 Oct 09, 2022
Robustness via Cross-Domain Ensembles

Robustness via Cross-Domain Ensembles [ICCV 2021, Oral] This repository contains tools for training and evaluating: Pretrained models Demo code Traini

Visual Intelligence & Learning Lab, Swiss Federal Institute of Technology (EPFL) 27 Dec 23, 2022
Segmentation for medical image.

EfficientSegmentation Introduction EfficientSegmentation is an open source, PyTorch-based segmentation framework for 3D medical image. Features A whol

68 Nov 28, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi.

Spchcat Speech recognition tool to convert audio to text transcripts, for Linux and Raspberry Pi. Description spchcat is a command-line tool that read

Pete Warden 279 Jan 03, 2023
Parallel Latent Tree-Induction for Faster Sequence Encoding

FastTrees This repository contains the experimental code supporting the FastTrees paper by Bill Pung. Software Requirements Python 3.6, NLTK and PyTor

Bill Pung 4 Mar 29, 2022
This repository contains the exercises and its solution contained in the book "An Introduction to Statistical Learning" in python.

An-Introduction-to-Statistical-Learning This repository contains the exercises and its solution contained in the book An Introduction to Statistical L

2.1k Jan 02, 2023
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch ์•ˆ๋…•ํ•˜์„ธ์š”. ์ €๋Š” TUNiB์—์„œ ๋จธ์‹ ๋Ÿฌ๋‹ ์—”์ง€๋‹ˆ์–ด๋กœ ๊ทผ๋ฌด ์ค‘์ธ ๊ณ ํ˜„์›…์ž…๋‹ˆ๋‹ค. ์ด ์ž๋ฃŒ๋Š” ๋Œ€๊ทœ๋ชจ ์–ธ์–ด๋ชจ๋ธ ๊ฐœ๋ฐœ์— ํ•„์š”ํ•œ ์—ฌ๋Ÿฌ๊ฐ€์ง€ ๊ธฐ์ˆ ๋“ค์„ ์†Œ๊ฐœ๋“œ๋ฆฌ๊ธฐ ์œ„ํ•ด ๋งˆ๋ จํ•˜์˜€์œผ๋ฉฐ ๊ธฐ๋ณธ์ ์œผ๋กœ

TUNiB 172 Dec 29, 2022
Learn the Deep Learning for Computer Vision in three steps: theory from base to SotA, code in PyTorch, and space-repetition with Anki

DeepCourse: Deep Learning for Computer Vision arthurdouillard.com/deepcourse/ This is a course I'm giving to the French engineering school EPITA each

Arthur Douillard 113 Nov 29, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
CVPR2021 Content-Aware GAN Compression

Content-Aware GAN Compression [ArXiv] Paper accepted to CVPR2021. @inproceedings{liu2021content, title = {Content-Aware GAN Compression}, auth

52 Nov 06, 2022
Code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms.

RDC-SLAM This repository contains code for a real-time distributed cooperative slam(RDC-SLAM) system for ROS compatible platforms. The system takes in

40 Nov 19, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Reaction SMILES-AA mapping via language modelling

rxn-aa-mapper Reactions SMILES-AA sequence mapping setup conda env create -f conda.yml conda activate rxn_aa_mapper In the following we consider on ex

16 Dec 13, 2022
Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are implemented and can be seen in tensorboard.

Sarus published models Sarus implementation of classical ML models. The models are implemented using the Keras API of tensorflow 2. Vizualization are

Sarus Technologies 39 Aug 19, 2022
AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations

AugLy is a data augmentations library that currently supports four modalities (audio, image, text & video) and over 100 augmentations. Each modalityโ€™s augmentations are contained within its own sub-l

Facebook Research 4.6k Jan 09, 2023