Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Related tags

Text Data & NLPembert
Overview

EmBERT: A Transformer Model for Embodied, Language-guided Visual Task Completion

We present Embodied BERT (EmBERT), a transformer-based model which can attend to high-dimensional, multi-modal inputs across long temporal horizons for language-conditioned task completion. Additionally, we bridge the gap between successful object-centric navigation models used for non-interactive agents and the language-guided visual task completion benchmark, ALFRED, by introducing object navigation targets for EmBERT training. We achieve competitive performance on the ALFRED benchmark, and EmBERT marks the first transformer-based model to successfully handle the long-horizon, dense, multi-modal histories of ALFRED, and the first ALFRED model to utilize object-centric navigation targets.

In this repository, we provide the entire codebase which is used for training and evaluating EmBERT performance on the ALFRED dataset. It's mostly based on AllenNLP and PyTorch-Lightning therefore it's inherently easily to extend.

Setup

We used Anaconda for our experiments. Please create an anaconda environment and then install the project dependencies with the following command:

pip install -r requirements.txt

As next step, we will download the ALFRED data using the script scripts/download_alfred_data.sh as follows:

sh scripts/donwload_alfred_data.sh json_feat

Before doing so, make sure that you have installed p7zip because is used to extract the trajectory files.

MaskRCNN fine-tuning

We provide the code to fine-tune a MaskRCNN model on the ALFRED dataset. To create the vision dataset, use the script scripts/generate_vision_dataset.sh. This will create the dataset splits required by the training process. After this, it's possible to run the model fine-tuning using:

PYTHONPATH=. python vision/finetune.py --batch_size 8 --gradient_clip_val 5 --lr 3e-4 --gpus 1 --accumulate_grad_batches 2 --num_workers 4 --save_dir storage/models/vision/maskrcnn_bs_16_lr_3e-4_epochs_46_7k_batches --max_epochs 46 --limit_train_batches 7000

We provide this code for reference however in our experiments we used the MaskRCNN model from MOCA which applies more sophisticated data augmentation techniques to improve performance on the ALFRED dataset.

ALFRED Visual Features extraction

MaskRCNN

The visual feature extraction script is responsible for generating the MaskRCNN features as well as orientation information for every bounding box. For the MaskrCNN model, we use the pretrained model from MOCA. You can download it from their GitHub page. First, we create the directory structure and then download the model weights:

mkdir -p storage/models/vision/moca_maskrcnn;
wget https://alfred-colorswap.s3.us-east-2.amazonaws.com/weight_maskrcnn.pt -O storage/models/vision/moca_maskrcnn/weight_maskrcnn.pt; 

We extract visual features for training trajectories using the following command:

sh scripts/generate_moca_maskrcnn.sh

You can refer to the actual extraction script scripts/generate_maskrcnn_horizon0.py for additional parameters. We executed this command on an p3.2xlarge instance with NVIDIA V100. This command will populate the directory storage/data/alfred/json_feat_2.1.0/ with the visual features for each trajectory step. In particular, the parameter --features_folder will specify the subdirectory (for each trajectory) that will contain the compressed NumPy files constituting the features. Each NumPy file has the following structure:

dict(
    box_features=np.array,
    roi_angles=np.array,
    boxes=np.array,
    masks=np.array,
    class_probs=np.array,
    class_labels=np.array,
    num_objects=int,
    pano_id=int
)

Data-augmentation procedure

In our paper, we describe a procedure to augment the ALFREd trajectories with object and corresponding receptacle information. In particular, we reply the trajectories and we make sure to track object and its receptacle during a subgoal. The data augmentation script will create a new trajectory file called ref_traj_data.json that mimics the same data structure of the original ALFRED dataset but adds to it a few fields for each action.

To start generating the refined data, use the following script:

PYTHONPATH=. python scripts/generate_landmarks.py 

EmBERT Training

Vocabulary creation

We use AllenNLP for training our models. Before starting the training we will generate the vocabulary for the model using the following command:

allennlp build-vocab training_configs/embert/embert_oscar.jsonnet storage/models/embert/vocab.tar.gz --include-package grolp

Training

First, we need to download the OSCAR checkpoint before starting the training process. We used a version of OSCAR which doesn't use object labels which can be freely downloaded following the instruction on GitHub. Make sure to download this file in the folder storage/models/pretrained using the following commands:

mkdir -p storage/models/pretrained/;
wget https://biglmdiag.blob.core.windows.net/oscar/pretrained_models/base-no-labels.zip -O storage/models/pretrained/oscar.zip;
unzip storage/models/pretrained/oscar.zip -d storage/models/pretrained/;
mv storage/models/pretrained/base-no-labels/ep_67_588997/pytorch_model.bin storage/models/pretrained/oscar-base-no-labels.bin;
rm storage/models/pretrained/oscar.zip;

A new model can be trained using the following command:

allennlp train training_configs/embert/embert_widest.jsonnet -s storage/models/alfred/embert --include-package grolp

When training for the first time, make sure to add to the previous command the following parameters: --preprocess --num_workers 4. This will make sure that the dataset is preprocessed and cached in order to speedup training. We run training using AWS EC2 instances p3.8xlarge with 16 workers on a single GPU per configuration.

The configuration file training_configs/embert/embert_widest.jsonnet contains all the parameters that you might be interested in if you want to change the way the model works or any reference to the actual features files. If you're interested in how to change the model itself, please refer to the model definition. The parameters in the constructor of the class will reflect the ones reported in the configuration file. In general, this project has been developed by using AllenNLP has a reference framework. We refer the reader to the official AllenNLP documentation for more details about how to structure a project.

EmBERT evaluation

We modified the original ALFRED evaluation script to make sure that the results are completely reproducible. Refer to the original repository for more information.

To run the evaluation on the valid_seen and valid_unseen you can use the provided script scripts/run_eval.sh in order to evaluate your model. The EmBERT trainer has different ways of saving checkpoints. At the end of the training, it will automatically save the best model in an archive named model.tar.gz in the destination folder (the one specified with -s). To evaluate it run the following command:

sh scripts/run_eval.sh <your_model_path>/model.tar.gz 

It's also possible to run the evaluation of a specific checkpoint. This can be done by running the previous command as follows:

sh scripts/run_eval.sh <your_model_path>/model-epoch=6.ckpt

In this way the evaluation script will load the checkpoint at epoch 6 in the path . When specifying a checkpoint directly, make sure that the folder contains both config.json file and vocabulary directory because they are required by the script to load all the correct model parameters.

Citation

If you're using this codebase please cite our work:

@article{suglia:embert,
  title={Embodied {BERT}: A Transformer Model for Embodied, Language-guided Visual Task Completion},
  author={Alessandro Suglia and Qiaozi Gao and Jesse Thomason and Govind Thattai and Gaurav Sukhatme},
  journal={arXiv},
  year={2021},
  url={https://arxiv.org/abs/2108.04927}
}
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
Code to reprudece NeurIPS paper: Accelerated Sparse Neural Training: A Provable and Efficient Method to Find N:M Transposable Masks

Accelerated Sparse Neural Training: A Provable and Efficient Method to FindN:M Transposable Masks Recently, researchers proposed pruning deep neural n

itay hubara 4 Feb 23, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
Extracting Summary Knowledge Graphs from Long Documents

GraphSum This repo contains the data and code for the G2G model in the paper: Extracting Summary Knowledge Graphs from Long Documents. The other basel

Zeqiu (Ellen) Wu 10 Oct 21, 2022
a chinese segment base on crf

Genius Genius是一个开源的python中文分词组件,采用 CRF(Conditional Random Field)条件随机场算法。 Feature 支持python2.x、python3.x以及pypy2.x。 支持简单的pinyin分词 支持用户自定义break 支持用户自定义合并词

duanhongyi 237 Nov 04, 2022
Script to generate VAD dataset used in Asteroid recipe

About the dataset LibriVAD is an open source dataset for voice activity detection in noisy environments. It is derived from LibriSpeech signals (clean

11 Sep 15, 2022
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU

GPU Docker NLP Application Deployment Deploying a Text Summarization NLP use case on Docker Container Utilizing Nvidia GPU, to setup the enviroment on

Ritesh Yadav 9 Oct 14, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022
CredData is a set of files including credentials in open source projects

CredData is a set of files including credentials in open source projects. CredData includes suspicious lines with manual review results and more information such as credential types for each suspicio

Samsung 19 Sep 07, 2022
Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph",

K-BERT Sorce code and datasets for "K-BERT: Enabling Language Representation with Knowledge Graph", which is implemented based on the UER framework. R

Weijie Liu 834 Jan 09, 2023
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
This is the Alpha of Nutte language, she is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda

nutte-language This is the Alpha of Nutte language, it is not complete yet / Essa é a Alpha da Nutte language, não está completa ainda My language was

catdochrome 2 Dec 18, 2021
nlpcommon is a python Open Source Toolkit for text classification.

nlpcommon nlpcommon, Python Text Tool. Guide Feature Install Usage Dataset Contact Cite Reference Feature nlpcommon is a python Open Source

xuming 3 May 29, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
texlive expressions for documents

tex2nix Generate Texlive environment containing all dependencies for your document rather than downloading gigabytes of texlive packages. Installation

Jörg Thalheim 70 Dec 26, 2022
A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk.

Simple-Vosk A Python wrapper for simple offline real-time dictation (speech-to-text) and speaker-recognition using Vosk. Check out the official Vosk G

2 Jun 19, 2022
A PyTorch implementation of the Transformer model in "Attention is All You Need".

Attention is all you need: A Pytorch Implementation This is a PyTorch implementation of the Transformer model in "Attention is All You Need" (Ashish V

Yu-Hsiang Huang 7.1k Jan 05, 2023