Transfer Learning library for Deep Neural Networks.

Overview

Xfer

Transfer and meta-learning in Python


Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalone MXNet library (installable with pip) which largely automates deep transfer learning. The rest of the folders contain research code for a novel method in transfer or meta-learning, implemented in a variety of frameworks (not necessarily in MXNet).

In more detail:

  • xfer-ml: A library that allows quick and easy transfer of knowledge stored in deep neural networks implemented in MXNet. xfer-ml can be used with data of arbitrary numeric format, and can be applied to the common cases of image or text data. It can be used as a pipeline that spans from extracting features to training a repurposer. The repurposer is then an object that carries out predictions in the target task. You can also use individual components of the library as part of your own pipeline. For example, you can leverage the feature extractor to extract features from deep neural networks or ModelHandler, which allows for quick building of neural networks, even if you are not an MXNet expert.
  • leap: MXNet implementation of "leap", the meta-gradient path learner (link) by S. Flennerhag, P. G. Moreno, N. Lawrence, A. Damianou, which appeared at ICLR 2019.
  • nn_similarity_index: PyTorch code for comparing trained neural networks using both feature and gradient information. The method is used in the arXiv paper (link) by S. Tang, W. Maddox, C. Dickens, T. Diethe and A. Damianou.
  • finite_ntk: PyTorch implementation of finite width neural tangent kernels from the paper On Transfer Learning with Linearised Neural Networks (link), by W. Maddox, S. Tang, P. G. Moreno, A. G. Wilson, and A. Damianou, which appeared at the NeurIPS MetaLearning Workshop 2019.
  • synthetic_info_bottleneck PyTorch implementation of the Synthetic Information Bottleneck algorithm for few-shot classification on Mini-ImageNet, which is used in paper Empirical Bayes Transductive Meta-Learning with Synthetic Gradients (link) by S. X. Hu, P. G. Moreno, Y. Xiao, X. Shen, G. Obozinski, N. Lawrence and A. Damianou, which appeared at ICLR 2020.
  • var_info_distil PyTorch implementation of the paper Variational Information Distillation for Knowledge Transfer (link) by S. Ahn, S. X. Hu, A. Damianou, N. Lawrence, Z. Dai, which appeared at CVPR 2019.

Navigate to the corresponding folder for more details.

Contributing

You may contribute to the existing projects by reading the individual contribution guidelines in each corresponding folder.

License

The code under this repository is licensed under the Apache 2.0 License.

Owner
Amazon
Amazon
[ICLR 2021] Rank the Episodes: A Simple Approach for Exploration in Procedurally-Generated Environments.

[ICLR 2021] RAPID: A Simple Approach for Exploration in Reinforcement Learning This is the Tensorflow implementation of ICLR 2021 paper Rank the Episo

Daochen Zha 48 Nov 21, 2022
UCSD Oasis platform

oasis UCSD Oasis platform Local project setup Install Docker Compose and make sure you have Pip installed Clone the project and go to the project fold

InSTEDD 4 Jun 16, 2021
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
A PyTorch-based open-source framework that provides methods for improving the weakly annotated data and allows researchers to efficiently develop and compare their own methods.

Knodle (Knowledge-supervised Deep Learning Framework) - a new framework for weak supervision with neural networks. It provides a modularization for se

93 Nov 06, 2022
Calibrated Hyperspectral Image Reconstruction via Graph-based Self-Tuning Network.

mask-uncertainty-in-HSI This repository contains the testing code and pre-trained models for the paper Calibrated Hyperspectral Image Reconstruction v

JIAMIAN WANG 9 Dec 29, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework

neon_course This repository contains several jupyter notebooks to help users learn to use neon, our deep learning framework. For more information, see

Nervana 92 Jan 03, 2023
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
This repository contains the code for: RerrFact model for SciVer shared task

RerrFact This repository contains the code for: RerrFact model for SciVer shared task. Setup for Inference 1. Download SciFact database Download the S

Ashish Rana 1 May 22, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index.

TechSEO Crawler Build a small, 3 domain internet using Github pages and Wikipedia and construct a crawler to crawl, render, and index. Play with the r

JR Oakes 57 Nov 24, 2022
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022