Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

Overview

LieTransformer

This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-attention for Lie Groups

Pattern recognition Molecular property prediction Particle Dynamics
Constellations Rotating molecule Particle trajectories

Introduction

LieTransformer is a equivariant Transformer-like model, built out of equivariant self attention layers (LieSelfAttention). The model can be made equivariant to any Lie group, simply by providing and implementation of the group of interest. A number of commonly used groups are already implemented, building off the work of LieConv. Switching group equivariance requires no change to model architecture, only passsing a different group to the model.

Architecture

The overall architecture of the LieTransformer is similar to the architecture of the original Transformer, interleaving series of attention layers and pointwise MLPs in residual blocks. The architecture of the LieSelfAttention blocks differs however, and can be seen below. For more details, please see the paper.

model diagram

Installation

To repoduce the experiments in this library, first clone the repo via https://github.com/anonymous-code-0/lie-transformer. To install the dependencies and create a virtual environment, execute setup_virtualenv.sh. Alternatively you can install the library and its dependencies without creating a virtual environment via pip install -e ..

To install the library as a dependency for another project use https://github.com/anonymous-code-0/lie-transformer.

Alternatively, you can install all the dependencies using pip install -r requirements.txt. If you do so, you will need to install the LieConv, Forge, and this repo itself (using the pip install -e command). Please note the version of LieConv used in this project is a slightly modified version of the original repo which fixes a bug for updated PyTorch versions.

Training a model

Example command to train a model (in this case the Set Transformer on the constellation dataset):

python3 scripts/train_constellation.py --data_config configs/constellation.py --model_config configs/set_transformer.py --run_name my_experiment --learning_rate=1e-4 --batch_size 128

The model and the dataset can be chosen by specifying different config files. Flags for configuring the model and the dataset are available in the respective config files. The project is using forge for configs and experiment management. Please refer to examples for details.

Counting patterns in the constellation dataset

The first task implemented is counting patterns in the constellation dataset. We generate a fixed dataset of constellations, where each constellation consists of 0-8 patterns; each pattern consists of corners of a shape. Currently available shapes are triangle, square, pentagon and an L. The task is to count the number of occurences of each pattern. To save to file the constellation datasets, run before training:

python3 scripts/data_to_file.py

Else, the constellation datasets are regenerated at the beginning of the training.

Dataset and model consistency

When changing the dataset parameters (e.g. number of patterns, types of patterns etc) make sure that the model parameters are adjusted accordingly. For example patterns=square,square,triangle,triangle,pentagon,pentagon,L,L means that there can be four different patterns, each repeated two times. That means that counting will involve four three-way classification tasks, and so that n_outputs and output_dim in classifier.py needs to be set to 4 and 3, respectively. All this can be set through command-line arguments.

Results

Constellations results

QM9

This dataset consists of 133,885 small inorganic molecules described by the location and charge of each atom in the molecule, along with the bonding structure of the molecule. The dataset includes 19 properties of each molecule, such as various rotational constants, energies and enthalpies. We aim to predict 12 of these properties.

python scripts/train_molecule.py \
    --run_name "molecule_homo" \
    --model_config "configs/molecule/eqv_transformer_model.py" \
    --model_seed 0
    --data_seed 0 \
    --task homo

Configurable scripts for running the experiments in the paper exist in the scripts folder, scripts/train_molecule_SE3transformer.sh, scripts/train_molecule_SE3lieconv.sh.

Results

QM9 results

Hamiltonian dynamics

In this experiment we aim to predict the trajectory of a number of particles connected together by a series of springs. This is done by learning the Hamiltonian of the system from observed trajectories.

The following command generates a dataset of trajectories and trains LieTransformer on it

T(2) default: python scripts/train_dynamics.py
SE(2) default: python scripts/train_dynamics.py --group 'SE(2)_canonical' --lift_samples 2 --num_layers 3 --dim_hidden 80

Results

Rollout MSE Example Trajectories
dynamics rollout trajectories

Contributing

Contributions are best developed in separate branches. Once a change is ready, please submit a pull request with a description of the change. New model and data configs should go into the config folder, and the rest of the code should go into the eqv_transformer folder.

Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
Dcf-game-infrastructure-public - Contains all the components necessary to run a DC finals (attack-defense CTF) game from OOO

dcf-game-infrastructure All the components necessary to run a game of the OOO DC

Order of the Overflow 46 Sep 13, 2022
PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud, CVPR 2019.

PointRCNN PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud Code release for the paper PointRCNN:3D Object Proposal Generation a

Shaoshuai Shi 1.5k Dec 27, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Sentiment analysis translations of the Bhagavad Gita

Sentiment and Semantic Analysis of Bhagavad Gita Translations It is well known that translations of songs and poems not only breaks rhythm and rhyming

Machine learning and Bayesian inference @ UNSW Sydney 3 Aug 01, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF shows significant improvements over baseline fine-tuning without data filtration.

Information Gain Filtration Information Gain Filtration (IGF) is a method for filtering domain-specific data during language model finetuning. IGF sho

4 Jul 28, 2022
Robotics environments

Robotics environments Details and documentation on these robotics environments are available in OpenAI's blog post and the accompanying technical repo

Farama Foundation 121 Dec 28, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Mitsuba 2: A Retargetable Forward and Inverse Renderer

Mitsuba Renderer 2 Documentation Mitsuba 2 is a research-oriented rendering system written in portable C++17. It consists of a small set of core libra

Mitsuba Physically Based Renderer 2k Jan 07, 2023
Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers.

Contra-OOD Code for EMNLP 2021 paper Contrastive Out-of-Distribution Detection for Pretrained Transformers. Requirements PyTorch Transformers datasets

Wenxuan Zhou 27 Oct 28, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022