NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

Overview

NLPretext

Working on an NLP project and tired of always looking for the same silly preprocessing functions on the web? 😫

Need to efficiently extract email adresses from a document? Hashtags from tweets? Remove accents from a French post? 😥

NLPretext got you covered! 🚀

NLPretext packages in a unique library all the text preprocessing functions you need to ease your NLP project.

🔍 Quickly explore below our preprocessing pipelines and individual functions referential.

Cannot find what you were looking for? Feel free to open an issue.

Installation

This package has been tested on Python 3.6, 3.7 and 3.8.

We strongly advise you to do the remaining steps in a virtual environnement.

To install this library you just have to run the following command:

pip install nlpretext

This library uses Spacy as tokenizer. Current models supported are en_core_web_sm and fr_core_news_sm. If not installed, run the following commands:

pip install https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-2.3.1/en_core_web_sm-2.3.1.tar.gz
pip install https://github.com/explosion/spacy-models/releases/download/fr_core_news_sm-2.3.0/fr_core_news_sm-2.3.0.tar.gz

Preprocessing pipeline

Default pipeline

Need to preprocess your text data but no clue about what function to use and in which order? The default preprocessing pipeline got you covered:

from nlpretext import Preprocessor
text = "I just got the best dinner in my life @latourdargent !!! I  recommend 😀 #food #paris \n"
preprocessor = Preprocessor()
text = preprocessor.run(text)
print(text)
# "I just got the best dinner in my life !!! I recommend"

Create your custom pipeline

Another possibility is to create your custom pipeline if you know exactly what function to apply on your data, here's an example:

from nlpretext import Preprocessor
from nlpretext.basic.preprocess import (normalize_whitespace, remove_punct, remove_eol_characters,
remove_stopwords, lower_text)
from nlpretext.social.preprocess import remove_mentions, remove_hashtag, remove_emoji
text = "I just got the best dinner in my life @latourdargent !!! I  recommend 😀 #food #paris \n"
preprocessor = Preprocessor()
preprocessor.pipe(lower_text)
preprocessor.pipe(remove_mentions)
preprocessor.pipe(remove_hashtag)
preprocessor.pipe(remove_emoji)
preprocessor.pipe(remove_eol_characters)
preprocessor.pipe(remove_stopwords, args={'lang': 'en'})
preprocessor.pipe(remove_punct)
preprocessor.pipe(normalize_whitespace)
text = preprocessor.run(text)
print(text)
# "dinner life recommend"

Take a look at all the functions that are available here in the preprocess.py scripts in the different folders: basic, social, token.

Individual Functions

Replacing emails

from nlpretext.basic.preprocess import replace_emails
example = "I have forwarded this email to [email protected]"
example = replace_emails(example, replace_with="*EMAIL*")
print(example)
# "I have forwarded this email to *EMAIL*"

Replacing phone numbers

from nlpretext.basic.preprocess import replace_phone_numbers
example = "My phone number is 0606060606"
example = replace_phone_numbers(example, country_to_detect=["FR"], replace_with="*PHONE*")
print(example)
# "My phone number is *PHONE*"

Removing Hashtags

from nlpretext.social.preprocess import remove_hashtag
example = "This restaurant was amazing #food #foodie #foodstagram #dinner"
example = remove_hashtag(example)
print(example)
# "This restaurant was amazing"

Extracting emojis

from nlpretext.social.preprocess import extract_emojis
example = "I take care of my skin 😀"
example = extract_emojis(example)
print(example)
# [':grinning_face:']

Data augmentation

The augmentation module helps you to generate new texts based on your given examples by modifying some words in the initial ones and to keep associated entities unchanged, if any, in the case of NER tasks. If you want words other than entities to remain unchanged, you can specify it within the stopwords argument. Modifications depend on the chosen method, the ones currently supported by the module are substitutions with synonyms using Wordnet or BERT from the nlpaug library.

from nlpretext.augmentation.text_augmentation import augment_text
example = "I want to buy a small black handbag please."
entities = [{'entity': 'Color', 'word': 'black', 'startCharIndex': 22, 'endCharIndex': 27}]
example = augment_text(example, method=wordnet_synonym”, entities=entities)
print(example)
# "I need to buy a small black pocketbook please."

Make HTML documentation

In order to make the html Sphinx documentation, you need to run at the nlpretext root path: sphinx-apidoc -f nlpretext -o docs/ This will generate the .rst files. You can generate the doc with cd docs && make html

You can now open the file index.html located in the build folder.

Project Organization


├── LICENSE
├── VERSION
├── CONTRIBUTING.md     <- Contribution guidelines
├── README.md           <- The top-level README for developers using this project.
├── .github/workflows   <- Where the CI lives
├── datasets/external   <- Bash scripts to download external datasets
├── docs                <- Sphinx HTML documentation
├── nlpretext           <- Main Package. This is where the code lives
│   ├── preprocessor.py <- Main preprocessing script
│   ├── augmentation    <- Text augmentation script
│   ├── basic           <- Basic text preprocessing 
│   ├── social          <- Social text preprocessing
│   ├── token           <- Token text preprocessing
│   ├── _config         <- Where the configuration and constants live
│   └── _utils          <- Where preprocessing utils scripts lives
├── tests               <- Where the tests lives
├── setup.py            <- makes project pip installable (pip install -e .) so the package can be imported
├── requirements.txt    <- The requirements file for reproducing the analysis environment, e.g.
│                          generated with `pip freeze > requirements.txt`
└── pylintrc            <- The linting configuration file
Comments
  • Bump actions/cache from 2.1.6 to 3.2.1

    Bump actions/cache from 2.1.6 to 3.2.1

    Bumps actions/cache from 2.1.6 to 3.2.1.

    Release notes

    Sourced from actions/cache's releases.

    v3.2.1

    What's Changed

    Full Changelog: https://github.com/actions/cache/compare/v3.2.0...v3.2.1

    v3.2.0

    What's Changed

    New Contributors

    Full Changelog: https://github.com/actions/cache/compare/v3...v3.2.0

    v3.2.0-beta.1

    What's Changed

    v3.1.0-beta.3

    What's Changed

    • Bug fixes for bsdtar fallback, if gnutar not available, and gzip fallback, if cache saved using old cache action, on windows.

    Full Changelog: https://github.com/actions/cache/compare/v3.1.0-beta.2...v3.1.0-beta.3

    ... (truncated)

    Changelog

    Sourced from actions/cache's changelog.

    3.2.1

    • Update @actions/cache on windows to use gnu tar and zstd by default and fallback to bsdtar and zstd if gnu tar is not available. (issue)
    • Added support for fallback to gzip to restore old caches on windows.
    • Added logs for cache version in case of a cache miss.
    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    draft dependencies github_actions 
    opened by dependabot[bot] 0
  • Bump python from 3.9.7-slim-buster to 3.11.1-slim-buster in /docker

    Bump python from 3.9.7-slim-buster to 3.11.1-slim-buster in /docker

    Bumps python from 3.9.7-slim-buster to 3.11.1-slim-buster.

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    draft docker dependencies 
    opened by dependabot[bot] 0
  • The current release is not functional as emoji lib has changed

    The current release is not functional as emoji lib has changed

    🐛 Bug Report

    🔬 How To Reproduce

    Steps to reproduce the behavior:

    1. install nlpretext from pip (1.1.0)
    2. run from nlpretext._config import constants

    Code sample

    Environment

    • OS: macOS Silicon
    • Python version: 3.7, 3.8, 3.9

    📈 Expected behavior

    EMOJI_PATTERN = _emoji.get_emoji_regexp()

    AttributeError: module 'emoji' has no attribute 'get_emoji_regexp'

    bug 
    opened by Guillaume6606 1
  • Bump release-drafter/release-drafter from 5.15.0 to 5.21.1

    Bump release-drafter/release-drafter from 5.15.0 to 5.21.1

    Bumps release-drafter/release-drafter from 5.15.0 to 5.21.1.

    Release notes

    Sourced from release-drafter/release-drafter's releases.

    v5.21.1

    What's Changed

    Dependency Updates

    Full Changelog: https://github.com/release-drafter/release-drafter/compare/v5.21.0...v5.21.1

    v5.21.0

    What's Changed

    New

    Full Changelog: https://github.com/release-drafter/release-drafter/compare/v5.20.1...v5.21.0

    v5.20.1

    What's Changed

    Bug Fixes

    Documentation

    Dependency Updates

    ... (truncated)

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    draft dependencies github_actions 
    opened by dependabot[bot] 0
  • Bump cloudpickle from 2.0.0 to 2.2.0

    Bump cloudpickle from 2.0.0 to 2.2.0

    Bumps cloudpickle from 2.0.0 to 2.2.0.

    Changelog

    Sourced from cloudpickle's changelog.

    2.2.0

    2.1.0

    Commits

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    draft dependencies python 
    opened by dependabot[bot] 0
Releases(1.1.0)
Materials (slides, code, assignments) for the NYU class I teach on NLP and ML Systems (Master of Engineering).

FREE_7773 Repo containing material for the NYU class (Master of Engineering) I teach on NLP, ML Sys etc. For context on what the class is trying to ac

Jacopo Tagliabue 90 Dec 19, 2022
Multilingual Emotion classification using BERT (fine-tuning). Published at the WASSA workshop (ACL2022).

XLM-EMO: Multilingual Emotion Prediction in Social Media Text Abstract Detecting emotion in text allows social and computational scientists to study h

MilaNLP 35 Sep 17, 2022
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
String Gen + Word Checker

Creates random strings and checks if any of them are a real words. Mostly a waste of time ngl but it is cool to see it work and the fact that it can generate a real random word within10sec

1 Jan 06, 2022
Natural Language Processing at EDHEC, 2022

Natural Language Processing Here you will find the teaching materials for the "Natural Language Processing" course at EDHEC Business School, 2022 What

1 Feb 04, 2022
Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Expediting Vision Transformers via Token Reorganizations This repository contain

Youwei Liang 101 Dec 26, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022
A Fast Command Analyser based on Dict and Pydantic

Alconna Alconna 隶属于ArcletProject, 在Cesloi内有内置 Alconna 是 Cesloi-CommandAnalysis 的高级版,支持解析消息链 一般情况下请当作简易的消息链解析器/命令解析器 文档 暂时的文档 Example from arclet.alcon

19 Jan 03, 2023
ACL22 paper: Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost

Imputing Out-of-Vocabulary Embeddings with LOVE Makes Language Models Robust with Little Cost LOVE is accpeted by ACL22 main conference as a long pape

Lihu Chen 32 Jan 03, 2023
🦆 Contextually-keyed word vectors

sense2vec: Contextually-keyed word vectors sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detaile

Explosion 1.5k Dec 25, 2022
Python package for Turkish Language.

PyTurkce Python package for Turkish Language. Documentation: https://pyturkce.readthedocs.io. Installation pip install pyturkce Usage from pyturkce im

Mert Cobanov 14 Oct 09, 2022
A fast Text-to-Speech (TTS) model. Work well for English, Mandarin/Chinese, Japanese, Korean, Russian and Tibetan (so far). 快速语音合成模型,适用于英语、普通话/中文、日语、韩语、俄语和藏语(当前已测试)。

简体中文 | English 并行语音合成 [TOC] 新进展 2021/04/20 合并 wavegan 分支到 main 主分支,删除 wavegan 分支! 2021/04/13 创建 encoder 分支用于开发语音风格迁移模块! 2021/04/13 softdtw 分支 支持使用 Sof

Atomicoo 161 Dec 19, 2022
Code for Emergent Translation in Multi-Agent Communication

Emergent Translation in Multi-Agent Communication PyTorch implementation of the models described in the paper Emergent Translation in Multi-Agent Comm

Facebook Research 75 Jul 15, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
A library for finding knowledge neurons in pretrained transformer models.

knowledge-neurons An open source repository replicating the 2021 paper Knowledge Neurons in Pretrained Transformers by Dai et al., and extending the t

EleutherAI 96 Dec 21, 2022
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022
Code for paper: An Effective, Robust and Fairness-awareHate Speech Detection Framework

BiQQLSTM_HS Code and data for paper: Title: An Effective, Robust and Fairness-awareHate Speech Detection Framework. Authors: Guanyi Mou and Kyumin Lee

Guanyi Mou 2 Dec 27, 2022
Header-only C++ HNSW implementation with python bindings

Hnswlib - fast approximate nearest neighbor search Header-only C++ HNSW implementation with python bindings. NEWS: version 0.6 Thanks to (@dyashuni) h

2.3k Jan 05, 2023
Code associated with the "Data Augmentation using Pre-trained Transformer Models" paper

Data Augmentation using Pre-trained Transformer Models Code associated with the Data Augmentation using Pre-trained Transformer Models paper Code cont

44 Dec 31, 2022
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021