Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Overview

Piggyback: https://arxiv.org/abs/1801.06519

Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Datasets in PyTorch format are available here: https://uofi.box.com/s/ixncr3d85guosajywhf7yridszzg5zsq
All rights belong to the respective publishers. The datasets are provided only to aid reproducibility.

The PyTorch-friendly Places365 dataset can be downloaded from http://places2.csail.mit.edu/download.html

Place masks in checkpoints/ and unzipped datasets in data/

VGG-16 ResNet-50 DenseNet-121
CUBS 20.75 18.23 19.24
Stanford Cars 11.78 10.19 10.62
Flowers 6.93 4.77 4.91
WikiArt 29.80 28.57 29.33
Sketch 22.30 19.75 20.05

Note that the numbers in the paper are averaged over multiple runs for each ordering of datasets. These numbers were obtained by evaluating the models on a Titan X (Pascal). Note that numbers on other GPUs might be slightly different (~0.1%) owing to cudnn algorithm selection. https://discuss.pytorch.org/t/slightly-different-results-on-k-40-v-s-titan-x/10064

Requirements:

Python 2.7 or 3.xx
torch==0.2.0.post3
torchvision==0.1.9
torchnet (pip install git+https://github.com/pytorch/[email protected])
tqdm (pip install tqdm)

Run all code from the src/ directory, e.g. ./scripts/run_piggyback_training.sh

Training:

Check out src/scripts/run_piggyback_training.sh.

This script uses the default hyperparams and trains a model as described in the paper. The best performing model on the val set is saved to disk. This saved model includes the real-valued mask weights.

By default, we use the models provided by torchvision as our backbone networks. If you intend to evaluate with the masks provided by us, please use the correct version of torch and torchvision. In case you want to use a different version, but still want to use our masks, then download the pytorch_backbone networks provided in the box link above. Make appropriate changes to your pytorch code to load those backbone models.

Saving trained masks only.

Check out src/scripts/run_packing.sh.

This extracts the binary/ternary masks from the above trained models, and saves them separately.

Eval:

Use the saved masks, apply them to a backbone network and run eval.

By default, our backbone models are those provided with torchvision.
Note that to replicate our results, you have to use the package versions specified above.
Newer package versions might have different weights for the backbones, and the provided masks won't work.

cd src  # Run everything from src/

CUDA_VISIBLE_DEVICES=0 python pack.py --mode eval --dataset flowers \
  --arch vgg16 \
  --maskloc ../checkpoints/vgg16_binary.pt
Owner
Arun Mallya
NVIDIA Research
Arun Mallya
Simple Baselines for Human Pose Estimation and Tracking

Simple Baselines for Human Pose Estimation and Tracking News Our new work High-Resolution Representations for Labeling Pixels and Regions is available

Microsoft 2.7k Jan 05, 2023
PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations.

HPNet This repository contains the PyTorch implementation of paper: HPNet: Deep Primitive Segmentation Using Hybrid Representations. Installation The

Siming Yan 42 Dec 07, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
PanopticBEV - Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images

Bird's-Eye-View Panoptic Segmentation Using Monocular Frontal View Images This r

63 Dec 16, 2022
Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
RADIal is available now! Check the download section

Latest news: RADIal is available now! Check the download section. However, because we are currently working on the data anonymization, we provide for

valeo.ai 55 Jan 03, 2023
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
Simple renderer for use with MuJoCo (>=2.1.2) Python Bindings.

Viewer for MuJoCo in Python Interactive renderer to use with the official Python bindings for MuJoCo. Starting with version 2.1.2, MuJoCo comes with n

Rohan P. Singh 62 Dec 30, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
A pytorch implementation of Detectron. Both training from scratch and inferring directly from pretrained Detectron weights are available.

Use this instead: https://github.com/facebookresearch/maskrcnn-benchmark A Pytorch Implementation of Detectron Example output of e2e_mask_rcnn-R-101-F

Roy 2.8k Dec 29, 2022
GestureSSD CBAM - A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js

GestureSSD_CBAM A gesture recognition web system based on SSD and CBAM, using pytorch, flask and node.js SSD implementation is based on https://github

xue_senhua1999 2 Jan 06, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
Inferred Model-based Fuzzer

IMF: Inferred Model-based Fuzzer IMF is a kernel API fuzzer that leverages an automated API model inferrence techinque proposed in our paper at CCS. I

SoftSec Lab 104 Sep 28, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021