This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

Overview

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

Usage

To replicate our results in Section 4, run:

python3 prompt_tune.py \
    --save-dir ../runs/prompt_tuned_sec4/ \
    --prompt-path ../data/binary_NLI_prompts.csv \
    --experiment-name sec4 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --production \
    --seeds 1

Add --fully-train if you want to train on the entire training set in addition to few-shot settings.

To replicate Section 5, run:

python3 prompt_tune.py \
    --save-dir ../runs/prompt_tuned_sec5/ \
    --prompt-path ../data/binary_NLI_prompts_permuted.csv \
    --experiment-name sec5 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --production \
    --seeds 1

To get a fine-tuning baseline (Figure 1):

python3 fine_tune.py \
    --save-dir ../runs/fine_tune/ \
    --epochs 5 \
    --few-shots 3,5,10,20,30,50,100,250 \
    --fully-train \
    --production \
    --seeds 1

To replicate our exact results, use --seeds 1,2,3,4,5,6,7,8, which yields starting_example_index of 550,231,974,966,1046,2350,1326,928 respectively. This is important for ensuring that all models trained under the same seed always see exactly the same training examples. See paper Section 3 for more details.

If these seeds do not generate the same starting_example_index for you (which you can check in the output CSV files), you will have to manually specify the few-shot subset of training examples. I plan to add an argparse argument for this to make it easy.

All other hyperparameters are the same as the argparse default.

Miscellaneous Notes

You might notice that the code and output files are set up to produce a fine-grained analysis of HANS (McCoy et al., 2019). We actually run all of our main experiments on HANS as well and got similar results, which we plan to write up in a future version of our paper. Meanwhile, if you’re curious, feel free to add --do-diagnosis which will report the results on HANS.

Requirements

Python 3.9.

3.7 should mostly work too. You’d have to just replace the new built-in type hints and dictionary union operators with their older equivalents.

Activate your preferred virtual envrionment and then run pip install -r requirements.txt. If you want to replicate our exact results, use

torch==1.9.0+cu111
transformers==4.9.2
datasets==1.11.0
Owner
Albert Webson
Computer science PhD by day. Philosophy MA by night. Advised by Ellie Pavlick at Brown University.
Albert Webson
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
Neural network for recognizing the gender of people in photos

Neural Network For Gender Recognition How to test it? Install requirements.txt file using pip install -r requirements.txt command Run nn.py using pyth

Valery Chapman 1 Sep 18, 2022
Semantic segmentation task for ADE20k & cityscapse dataset, based on several models.

semantic-segmentation-tensorflow This is a Tensorflow implementation of semantic segmentation models on MIT ADE20K scene parsing dataset and Cityscape

HsuanKung Yang 83 Oct 13, 2022
"Learning and Analyzing Generation Order for Undirected Sequence Models" in Findings of EMNLP, 2021

undirected-generation-dev This repo contains the source code of the models described in the following paper "Learning and Analyzing Generation Order f

Yichen Jiang 0 Mar 25, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
TrackFormer: Multi-Object Tracking with Transformers

TrackFormer: Multi-Object Tracking with Transformers This repository provides the official implementation of the TrackFormer: Multi-Object Tracking wi

Tim Meinhardt 321 Dec 29, 2022
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022