A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

Overview

GFNet-Pytorch (NeurIPS 2020)

This repo contains the official code and pre-trained models for the glance and focus network (GFNet).

Citation

@inproceedings{NeurIPS2020_7866,
        title = {Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in Image Classification},
       author = {Wang, Yulin and Lv, Kangchen and Huang, Rui and Song, Shiji and Yang, Le and Huang, Gao},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
         year = {2020},
}

Update on 2020/10/08: Release Pre-trained Models and the Inference Code on ImageNet.

Update on 2020/12/28: Release Training Code.

Introduction

Inspired by the fact that not all regions in an image are task-relevant, we propose a novel framework that performs efficient image classification by processing a sequence of relatively small inputs, which are strategically cropped from the original image. Experiments on ImageNet show that our method consistently improves the computational efficiency of a wide variety of deep models. For example, it further reduces the average latency of the highly efficient MobileNet-V3 on an iPhone XS Max by 20% without sacrificing accuracy.

Results

  • Top-1 accuracy on ImageNet v.s. Multiply-Adds

  • Top-1 accuracy on ImageNet v.s. Inference Latency (ms) on an iPhone XS Max

  • Visualization

Pre-trained Models

Backbone CNNs Patch Size T Links
ResNet-50 96x96 5 Tsinghua Cloud / Google Drive
ResNet-50 128x128 5 Tsinghua Cloud / Google Drive
DenseNet-121 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-169 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-201 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-600MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-800MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-1.6GF 96x96 5 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 96x96 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 128x128 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.25) 128x128 3 Tsinghua Cloud / Google Drive
EfficientNet-B2 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 144x144 4 Tsinghua Cloud / Google Drive
  • What are contained in the checkpoints:
**.pth.tar
├── model_name: name of the backbone CNNs (e.g., resnet50, densenet121)
├── patch_size: size of image patches (i.e., H' or W' in the paper)
├── model_prime_state_dict, model_state_dict, fc, policy: state dictionaries of the four components of GFNets
├── model_flops, policy_flops, fc_flops: Multiply-Adds of inferring the encoder, patch proposal network and classifier for once
├── flops: a list containing the Multiply-Adds corresponding to each length of the input sequence during inference
├── anytime_classification: results of anytime prediction (in Top-1 accuracy)
├── dynamic_threshold: the confidence thresholds used in budgeted batch classification
├── budgeted_batch_classification: results of budgeted batch classification (a two-item list, [0] and [1] correspond to the two coordinates of a curve)

Requirements

  • python 3.7.7
  • pytorch 1.3.1
  • torchvision 0.4.2
  • pyyaml 5.3.1 (for RegNets)

Evaluate Pre-trained Models

Read the evaluation results saved in pre-trained models

CUDA_VISIBLE_DEVICES=0 python inference.py --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 0

Read the confidence thresholds saved in pre-trained models and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 1

Determine confidence thresholds on the training set and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 2

The dataset is expected to be prepared as follows:

ImageNet
├── train
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...
├── val
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...

Training

  • Here we take training ResNet-50 (96x96, T=5) for example. All the used initialization models and stage-1/2 checkpoints can be found in Tsinghua Cloud / Google Drive. Currently, this link includes ResNet and MobileNet-V3. We will update it as soon as possible. If you need other helps, feel free to contact us.

  • The Results in the paper is based on 2 Tesla V100 GPUs. For most of experiments, up to 4 Titan Xp GPUs may be enough.

Training stage 1, the initializations of global encoder (model_prime) and local encoder (model) are required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 1 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --model_prime_path PATH_TO_CHECKPOINTS  --model_path PATH_TO_CHECKPOINTS

Training stage 2, a stage-1 checkpoint is required:

CUDA_VISIBLE_DEVICES=0 python train.py --data_url PATH_TO_DATASET --train_stage 2 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Training stage 3, a stage-2 checkpoint is required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 3 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Contact

If you have any question, please feel free to contact the authors. Yulin Wang: [email protected].

Acknowledgment

Our code of MobileNet-V3 and EfficientNet is from here. Our code of RegNet is from here.

To Do

  • Update the code for visualizing.

  • Update the code for MIXED PRECISION TRAINING。

Owner
Rainforest Wang
Rainforest Wang
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
working repo for my xumx-sliCQ submissions to the ISMIR 2021 MDX

Music Demixing Challenge - xumx-sliCQ This repository is the GitHub mirror of my working submission repository for the AICrowd ISMIR 2021 Music Demixi

4 Aug 25, 2021
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
The code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention.

CrossFormer This repository is the code for our paper CrossFormer: A Versatile Vision Transformer Based on Cross-scale Attention. Introduction Existin

cheerss 238 Jan 06, 2023
Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context Code in both PyTorch and TensorFlow

Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context This repository contains the code in both PyTorch and TensorFlow for our paper

Zhilin Yang 3.3k Jan 06, 2023
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
Code for the ICCV'21 paper "Context-aware Scene Graph Generation with Seq2Seq Transformers"

ICCV'21 Context-aware Scene Graph Generation with Seq2Seq Transformers Authors: Yichao Lu*, Himanshu Rai*, Cheng Chang*, Boris Knyazev†, Guangwei Yu,

Layer6 Labs 37 Dec 18, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
利用python脚本实现微信、支付宝账单的合并,并保存到excel文件实现自动记账,可查看可视化图表。

KeepAccounts_v2.0 KeepAccounts.exe和其配套表格能够实现微信、支付宝官方导出账单的读取合并,为每笔帐标记类型,并按月份和类型生成可视化图表。再也不用消费一笔记一笔,每月仅需10分钟,记好所有的帐。 作者: MickLife Bilibili: https://spac

159 Jan 01, 2023
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Implementation of UNet on the Joey ML framework

Independent Research Project - Code Joey can be cloned from here https://github.com/devitocodes/joey/. Devito and other dependencies such as PyTorch a

Navjot Kukreja 1 Oct 21, 2021