A general framework for inferring CNNs efficiently. Reduce the inference latency of MobileNet-V3 by 1.3x on an iPhone XS Max without sacrificing accuracy.

Overview

GFNet-Pytorch (NeurIPS 2020)

This repo contains the official code and pre-trained models for the glance and focus network (GFNet).

Citation

@inproceedings{NeurIPS2020_7866,
        title = {Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in Image Classification},
       author = {Wang, Yulin and Lv, Kangchen and Huang, Rui and Song, Shiji and Yang, Le and Huang, Gao},
    booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
         year = {2020},
}

Update on 2020/10/08: Release Pre-trained Models and the Inference Code on ImageNet.

Update on 2020/12/28: Release Training Code.

Introduction

Inspired by the fact that not all regions in an image are task-relevant, we propose a novel framework that performs efficient image classification by processing a sequence of relatively small inputs, which are strategically cropped from the original image. Experiments on ImageNet show that our method consistently improves the computational efficiency of a wide variety of deep models. For example, it further reduces the average latency of the highly efficient MobileNet-V3 on an iPhone XS Max by 20% without sacrificing accuracy.

Results

  • Top-1 accuracy on ImageNet v.s. Multiply-Adds

  • Top-1 accuracy on ImageNet v.s. Inference Latency (ms) on an iPhone XS Max

  • Visualization

Pre-trained Models

Backbone CNNs Patch Size T Links
ResNet-50 96x96 5 Tsinghua Cloud / Google Drive
ResNet-50 128x128 5 Tsinghua Cloud / Google Drive
DenseNet-121 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-169 96x96 5 Tsinghua Cloud / Google Drive
DenseNet-201 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-600MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-800MF 96x96 5 Tsinghua Cloud / Google Drive
RegNet-Y-1.6GF 96x96 5 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 96x96 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.00) 128x128 3 Tsinghua Cloud / Google Drive
MobileNet-V3-Large (1.25) 128x128 3 Tsinghua Cloud / Google Drive
EfficientNet-B2 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 128x128 4 Tsinghua Cloud / Google Drive
EfficientNet-B3 144x144 4 Tsinghua Cloud / Google Drive
  • What are contained in the checkpoints:
**.pth.tar
├── model_name: name of the backbone CNNs (e.g., resnet50, densenet121)
├── patch_size: size of image patches (i.e., H' or W' in the paper)
├── model_prime_state_dict, model_state_dict, fc, policy: state dictionaries of the four components of GFNets
├── model_flops, policy_flops, fc_flops: Multiply-Adds of inferring the encoder, patch proposal network and classifier for once
├── flops: a list containing the Multiply-Adds corresponding to each length of the input sequence during inference
├── anytime_classification: results of anytime prediction (in Top-1 accuracy)
├── dynamic_threshold: the confidence thresholds used in budgeted batch classification
├── budgeted_batch_classification: results of budgeted batch classification (a two-item list, [0] and [1] correspond to the two coordinates of a curve)

Requirements

  • python 3.7.7
  • pytorch 1.3.1
  • torchvision 0.4.2
  • pyyaml 5.3.1 (for RegNets)

Evaluate Pre-trained Models

Read the evaluation results saved in pre-trained models

CUDA_VISIBLE_DEVICES=0 python inference.py --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 0

Read the confidence thresholds saved in pre-trained models and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 1

Determine confidence thresholds on the training set and infer the model on the validation set

CUDA_VISIBLE_DEVICES=0 python inference.py --data_url PATH_TO_DATASET --checkpoint_path PATH_TO_CHECKPOINTS  --eval_mode 2

The dataset is expected to be prepared as follows:

ImageNet
├── train
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...
├── val
│   ├── folder 1 (class 1)
│   ├── folder 2 (class 1)
│   ├── ...

Training

  • Here we take training ResNet-50 (96x96, T=5) for example. All the used initialization models and stage-1/2 checkpoints can be found in Tsinghua Cloud / Google Drive. Currently, this link includes ResNet and MobileNet-V3. We will update it as soon as possible. If you need other helps, feel free to contact us.

  • The Results in the paper is based on 2 Tesla V100 GPUs. For most of experiments, up to 4 Titan Xp GPUs may be enough.

Training stage 1, the initializations of global encoder (model_prime) and local encoder (model) are required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 1 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --model_prime_path PATH_TO_CHECKPOINTS  --model_path PATH_TO_CHECKPOINTS

Training stage 2, a stage-1 checkpoint is required:

CUDA_VISIBLE_DEVICES=0 python train.py --data_url PATH_TO_DATASET --train_stage 2 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Training stage 3, a stage-2 checkpoint is required:

CUDA_VISIBLE_DEVICES=0,1,2,3 python train.py --data_url PATH_TO_DATASET --train_stage 3 --model_arch resnet50 --patch_size 96 --T 5 --print_freq 10 --checkpoint_path PATH_TO_CHECKPOINTS

Contact

If you have any question, please feel free to contact the authors. Yulin Wang: [email protected].

Acknowledgment

Our code of MobileNet-V3 and EfficientNet is from here. Our code of RegNet is from here.

To Do

  • Update the code for visualizing.

  • Update the code for MIXED PRECISION TRAINING。

Owner
Rainforest Wang
Rainforest Wang
Accelerate Neural Net Training by Progressively Freezing Layers

FreezeOut A simple technique to accelerate neural net training by progressively freezing layers. This repository contains code for the extended abstra

Andy Brock 203 Jun 19, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
Source code of the paper Meta-learning with an Adaptive Task Scheduler.

ATS About Source code of the paper Meta-learning with an Adaptive Task Scheduler. If you find this repository useful in your research, please cite the

Huaxiu Yao 16 Dec 26, 2022
上海交通大学全自动抢课脚本,支持准点开抢与抢课后持续捡漏两种模式。2021/06/08更新。

Welcome to Course-Bullying-in-SJTU-v3.1! 2021/6/8 紧急更新v3.1 更新说明 为了更好地保护用户隐私,将原来用户名+密码的登录方式改为微信扫二维码+cookie登录方式,不再需要配置使用pytesseract。在使用扫码登录模式时,请稍等,二维码将马

87 Sep 13, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

Spectralformer: Rethinking hyperspectral image classification with transformers Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza

Danfeng Hong 102 Dec 29, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
Gray Zone Assessment

Gray Zone Assessment Get started Clone github repository git clone https://github.com/andreanne-lemay/gray_zone_assessment.git Build docker image dock

1 Jan 08, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Least Square Calibration for Peer Reviews

Least Square Calibration for Peer Reviews Requirements gurobipy - for solving convex programs GPy - for Bayesian baseline numpy pandas To generate p

Sigma <a href=[email protected]"> 1 Nov 01, 2021
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
kullanışlı ve işinizi kolaylaştıracak bir araç

Hey merhaba! işte çok sorulan sorularının cevabı ve sorunlarının çözümü; Soru= İçinde var denilen birçok şeyi göremiyorum bunun sebebi nedir? Cevap= B

Sexettin 16 Dec 17, 2022