Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Overview

Sharpened Cosine Similarity

A layer implementation for PyTorch

Install

At your command line:

git clone https://github.com/brohrer/sharpened_cosine_similarity_torch.git

You'll need to install or upgrade PyTorch if you haven't already. If python3 is the command you use to invoke Python at your command line:

python3 -m pip install torch torchvision --upgrade

Demo

Run the Fashion MNIST demo to see sharpened cosine similarity in action.

cd sharpened_cosine_similarity_torch
python3 demo_fashion_mnist.py

When you run this it will take a few extra minutes the first time through to download and extract the Fashion MNIST data set. Its less than 100MB when fully extracted.

I run this entirely on laptop CPUs. I have a dual-core i7 that takes about 90 seconds per epoch and an 8-core i7 that takes about 45 seconds per epoch. Your mileage may vary.

Monitor

You can check on the status of your runs at any time. In another console navigate to the smae directory and run

python3 show_results.py

This will give a little console summary like this

testing errors for version test
mean  : 14.08%
stddev: 0.1099%
stderr: 0.03887%
n runs: 8

and drop a couple of plots like this in the plots directory showing how the classification error on the test data set decreases with each pass through the training data set.

A sample of testing error results over several runs

The demo will keep running for a long time if you let it. Kill it when you get bored of it. If you want to pick the sequence of runs back up, re-run the demo and it will load all the results it's generated so far and append to them.

Track

If you'd like to experiment with the sharpened cosine similarity code, the demo, or with other data sets, you can keep track of each new run by adding a version argument at the command line.

To start a run with version string "v37" run

python3 demo_fashion_mnist.py v37

To check on its progress

python3 show_results.py v37

The version string can be arbitrarily descriptive, for example "3_scs_layer_2_fully_connected_layer_learning_rate_003", but keep it alphanumeric with underscores.

Credit where it's due

Based on and copy/pasted heavily from code from Ze Wang and code from Oliver Batchelor and the TensorFlow implementation and blog post from Raphael Pisoni.

Owner
Brandon Rohrer
My latest and most interesting work has been migrated to GitLab. Come say hi. https://gitlab.com/brohrer
Brandon Rohrer
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography using a CNN-based orientation classifier')

The PyTorch re-implement of a 3D CNN Tracker to extract coronary artery centerlines with state-of-the-art (SOTA) performance. (paper: 'Coronary artery centerline extraction in cardiac CT angiography

James 135 Dec 23, 2022
3D ResNet Video Classification accelerated by TensorRT

Activity Recognition TensorRT Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT P.S Click on

Akash James 39 Nov 21, 2022
On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization

On the Limits of Pseudo Ground Truth in Visual Camera Re-Localization This repository contains the evaluation code and alternative pseudo ground truth

Torsten Sattler 36 Dec 22, 2022
SIEM Logstash parsing for more than hundred technologies

LogIndexer Pipeline Logstash Parsing Configurations for Elastisearch SIEM and OpenDistro for Elasticsearch SIEM Why this project exists The overhead o

146 Dec 29, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Image Segmentation Evaluation

Image Segmentation Evaluation Martin Keršner, [email protected] Evaluation

Martin Kersner 273 Oct 28, 2022
This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

This is an unofficial implementation of the paper “Student-Teacher Feature Pyramid Matching for Unsupervised Anomaly Detection”.

haifeng xia 32 Oct 26, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Code Release for ICCV 2021 (oral), "AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds"

AdaFit: Rethinking Learning-based Normal Estimation on Point Clouds (ICCV 2021 oral) **Project Page | Arxiv ** Runsong Zhu¹, Yuan Liu², Zhen Dong¹, Te

40 Dec 30, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

A face dataset generator with out-of-focus blur detection and dynamic interval adjustment.

Yutian Liu 2 Jan 29, 2022