Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

Overview

EMGDecomp

DOI

Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports GPU via CUDA and distributed computation via Dask.

Installation

pip install emgdecomp

For those that want to either use Dask and/or CUDA, you can alternatively run:

pip install emgdecomp[dask]
pip install emgdecomp[cuda]

Usage

Basic

# data should be a numpy array of n_channels x n_samples
sampling_rate, data = fetch_data(...)

decomp = EmgDecomposition(
  params=EmgDecompositionParams(
    sampling_rate=sampling_rate
  ))

firings = decomp.decompose(data)
print(firings)

The resulting firings object is a NumPy structured array containing the columns source_idx, discharge_samples, and discharge_seconds. source_idx is a 0-indexed ID for each "source" learned from the data; each source is a putative motor unit. discharge_samples indicates the sample at which the source was detected as "firing"; note that the algorithm can only detect sources up to a delay. discharge_seconds is the conversion of discharge_samples into seconds via the passed-in sampling rate.

As a structured NumPy array, the resulting firings object is suitable for conversion into a Pandas DataFrame:

import pandas as pd
print(pd.DataFrame(firings))

And the "sources" (i.e. components corresponding to motor units) can be interrogated as needed via the decomp.model property:

model = decomp.model
print(model.components)

Advanced

Given an already-fit EmgDecomposition object, you can then decompose a new batch of EMG data with its existing sources via transform:

# Assumes decomp is already fit
new_data = fetch_more_data(...)
new_firings = decomp.transform(new_data)
print(new_firings)

Alternatively, you can add new sources (i.e. new putative motor units) while retaining the existing sources with decompose_batch:

# Assumes decomp is already fit

more_data = fetch_even_more_data(...)
# Firings corresponding to sources that were both existing and newly added
firings2 = decomp.decompose_batch(more_data)
# Should have at least as many components as before decompose_batch()
print(decomp.model.components)

Finally, basic plotting capabilities are included as well:

from emgdecomp.plots import plot_firings, plot_muaps
plot_muaps(decomp, data, firings)
plot_firings(decomp, data, firings)

File I/O

The EmgDecomposition class is equipped with load and save methods that can save/load parameters to disk as needed; for example:

with open('/path/to/decomp.pkl', 'wb') as f:
  decomp.save(f)

with open('/path/to/decomp.pkl', 'rb') as f:
  decomp_reloaded = EmgDecomposition.load(f)

Dask and/or CUDA

Both Dask and CUDA are supported within EmgDecomposition for support for distributed computation across workers and/or use of GPU acceleration. Each are controlled via the use_dask and use_cuda boolean flags in the EmgDecomposition constructor.

Parameter Tuning

See the list of parameters in EmgDecompositionParameters. The defaults on master are set as they were used for Formento et. al, 2021 and should be reasonable defaults for others.

Documentation

See documentation on classes EmgDecomposition and EmgDecompositionParameters for more details.

Acknowledgements

If you enjoy this package and use it for your research, you can:

  • cite the Journal of Neural Engineering paper, Formento et. al 2021, for which this package was developed: TODO
  • cite this github repo using its DOI: 10.5281/zenodo.5641426
  • star this repo using the top-right star button.

Contributing / Questions

Feel free to open issues in this project if there are questions or feature requests. Pull requests for feature requests are very much encouraged, but feel free to create an issue first before implementation to ensure the desired change sounds appropriate.

You might also like...
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.
A Python package for Bayesian forecasting with object-oriented design and probabilistic models under the hood.

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Statistical package in Python based on Pandas
Statistical package in Python based on Pandas

Pingouin is an open-source statistical package written in Python 3 and based mostly on Pandas and NumPy. Some of its main features are listed below. F

A Python package for the mathematical modeling of infectious diseases via compartmental models
A Python package for the mathematical modeling of infectious diseases via compartmental models

A Python package for the mathematical modeling of infectious diseases via compartmental models. Originally designed for epidemiologists, epispot can be adapted for almost any type of modeling scenario.

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors

GWpy is a collaboration-driven Python package providing tools for studying data from ground-based gravitational-wave detectors. GWpy provides a user-f

A powerful data analysis package based on mathematical step functions.  Strongly aligned with pandas.
A powerful data analysis package based on mathematical step functions. Strongly aligned with pandas.

The leading use-case for the staircase package is for the creation and analysis of step functions. Pretty exciting huh. But don't hit the close button

Python Package for DataHerb: create, search, and load datasets.
Python Package for DataHerb: create, search, and load datasets.

The Python Package for DataHerb A DataHerb Core Service to Create and Load Datasets.

Comments
  • Expose functions for validation

    Expose functions for validation

    From https://github.com/carmenalab/emgdecomp/issues/3:

    Another question is that could you please provide some interface like '_assert_decomp_successful' at https://github.com/carmenalab/emgdecomp/blob/master/emgdecomp/tests/test_decomposition.py#L140 for validation?

    cc @shihan-ma

    opened by pbotros 1
  • Server restart error

    Server restart error

    Hi, Thanks for your repository!

    I used the scripts in the readme and tried to decompose a 10-s simulated signal (64 channels * 20480 samples). It works at most times, producing around 10 MUs against 18 real ones. However, sometimes our server restarted after running the scripts three or four times. We found that the program stuck at https://github.com/carmenalab/emgdecomp/blob/master/emgdecomp/decomposition.py#L405. After converting 'whitening_matrix' and 'normalized_data' to np.float32, the error decreases but still happens sometimes. Could you please give me some advice on the reason that induced the restart of the server? The memory seems okay and we did not use CUDA at this point.

    Another question is that could you please provide some interface like '_assert_decomp_successful' at https://github.com/carmenalab/emgdecomp/blob/master/emgdecomp/tests/test_decomposition.py#L140 for validation?

    Thanks!

    opened by shihan-ma 3
Releases(v0.1.0)
Full automated data pipeline using docker images

Create postgres tables from CSV files This first section is only relate to creating tables from CSV files using postgres container alone. Just one of

1 Nov 21, 2021
First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we want to understand column level lineage and automate impact analysis.

dbt-osmosis First and foremost, we want dbt documentation to retain a DRY principle. Every time we repeat ourselves, we waste our time. Second, we wan

Alexander Butler 150 Jan 06, 2023
Very basic but functional Kakuro solver written in Python.

kakuro.py Very basic but functional Kakuro solver written in Python. It uses a reduction to exact set cover and Ali Assaf's elegant implementation of

Louis Abraham 4 Jan 15, 2022
Automatic earthquake catalog building workflow: EQTransformer + Siamese EQTransformer + PickNet + REAL + HypoInverse

Automatic regional-scale earthquake catalog building workflow: EQTransformer + Siamese EQTransforme

Xiao Zhuowei 9 Nov 27, 2022
Gaussian processes in TensorFlow

Website | Documentation (release) | Documentation (develop) | Glossary Table of Contents What does GPflow do? Installation Getting Started with GPflow

GPflow 1.7k Jan 06, 2023
PyEmits, a python package for easy manipulation in time-series data.

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Thompson 5 Sep 23, 2022
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
BigDL - Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems

Evaluate the performance of BigDL (Distributed Deep Learning on Apache Spark) in big data analysis problems.

Vo Cong Thanh 1 Jan 06, 2022
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
Data Analytics on Genomes and Genetics

Data Analytics performed on On genomes and Genetics dataset to predict genetic disorder and disorder subclass. DONE by TEAM SIGMA!

1 Jan 12, 2022
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Investigating EV charging data

Investigating EV charging data Introduction: Got an opportunity to work with a home monitoring technology company over the last 6 months whose goal wa

Yash 2 Apr 07, 2022
An Indexer that works out-of-the-box when you have less than 100K stored Documents

U100KIndexer An Indexer that works out-of-the-box when you have less than 100K stored Documents. U100K means under 100K. At 100K stored Documents with

Jina AI 7 Mar 15, 2022
A stock analysis app with streamlit

StockAnalysisApp A stock analysis app with streamlit. You select the ticker of the stock and the app makes a series of analysis by using the price cha

Antonio Catalano 50 Nov 27, 2022
PyNHD is a part of HyRiver software stack that is designed to aid in watershed analysis through web services.

A part of HyRiver software stack that provides access to NHD+ V2 data through NLDI and WaterData web services

Taher Chegini 23 Dec 14, 2022
PySpark bindings for H3, a hierarchical hexagonal geospatial indexing system

h3-pyspark: Uber's H3 Hexagonal Hierarchical Geospatial Indexing System in PySpark PySpark bindings for the H3 core library. For available functions,

Kevin Schaich 12 Dec 24, 2022
AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures.

AptaMAT Purpose AptaMat is a simple script which aims to measure differences between DNA or RNA secondary structures. The method is based on the compa

GEC UTC 3 Nov 03, 2022