Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

Overview

On the Generative Utility of Cyclic Conditionals

This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals" (NeurIPS 2021).

Chang Liu <[email protected]>, Haoyue Tang, Tao Qin, Jintao Wang, Tie-Yan Liu.
[Paper & Appendix] [Slides] [Video] [Poster]

Introduction

graphical summary

Whether and how can two conditional models p(x|z) and q(z|x) that form a cycle uniquely determine a joint distribution p(x,z)? We develop a general theory for this question, including criteria for the two conditionals to correspond to a common joint (compatibility) and for such joint to be unique (determinacy). As in generative models we need a generator (decoder/likelihood model) and also an encoder (inference model) for representation, the theory indicates they could already define a generative model p(x,z) without specifying a prior distribution p(z)! We call this novel generative modeling framework as CyGen, and develop methods to achieve the eligibility (compatibility and determinacy) and the usage (fitting and generating data) as a generative model.

This codebase implements these CyGen methods, and various baseline methods. The model architectures are based on the Sylvester flow (Householder version), and the experiment environments/setups follow FFJORD. Authorship is clarified in each file.

Requirements

The code requires python version >= 3.6, and is based on PyTorch. To install requirements:

pip install -r requirements.txt

Usage

Run the run_toy.sh and run_image.sh scripts for the synthetic and real-world (i.e. MNIST and SVHN) experiments. See the commands in the script files or python3 main_[toy|image].py --help for customized usage or hyperparameter tuning.

For the real-world experiments, downstream classification accuracy is evaluated along training. To evaluate the FID score, run the command python3 compute_gen_fid.py --load_dict=<path_to_model.pth>.

Results

CyGen synthetic results

As a trailer, we show the synthetic results here. We see that CyGen achieves both high-quality data generation, and well-separated latent clusters (useful representation). This is due to the removal of a specified prior distribution so that the manifold mismatch and posterior collapse problems are avoided. DAE (denoising auto-encoder) does not need a prior, but its training method hurts determinacy. If pretrained as a VAE (i.e. CyGen(PT)), we see that the knowledge of a centered and centrosymmetric prior is encoded through the conditional models. See the paper for more results.

Owner
Chang Liu
Senior Researcher @ MSR Asia. Ph.D. from Tsinghua University. Statistical Machine Learning, Bayesian Inference, Generative Models
Chang Liu
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
PSANet: Point-wise Spatial Attention Network for Scene Parsing, ECCV2018.

PSANet: Point-wise Spatial Attention Network for Scene Parsing (in construction) by Hengshuang Zhao*, Yi Zhang*, Shu Liu, Jianping Shi, Chen Change Lo

Hengshuang Zhao 217 Oct 30, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
Randomized Correspondence Algorithm for Structural Image Editing

===================================== README: Inpainting based PatchMatch ===================================== @Author: Younesse ANDAM @Conta

Younesse 116 Dec 24, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
[NeurIPS 2021] Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training Code for NeurIPS 2021 paper "Better Safe Than Sorry: Preventing Delu

Lue Tao 29 Sep 20, 2022
wmctrl ported to Python Ctypes

work in progress wmctrl is a command that can be used to interact with an X Window manager that is compatible with the EWMH/NetWM specification. wmctr

Iyad Ahmed 22 Dec 31, 2022
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
DiffStride: Learning strides in convolutional neural networks

DiffStride is a pooling layer with learnable strides. Unlike strided convolutions, average pooling or max-pooling that require cross-validating stride values at each layer, DiffStride can be initiali

Google Research 113 Dec 13, 2022
Official PyTorch implementation of PS-KD

Self-Knowledge Distillation with Progressive Refinement of Targets (PS-KD) Accepted at ICCV 2021, oral presentation Official PyTorch implementation of

61 Dec 28, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
This is the dataset and code release of the OpenRooms Dataset.

This is the dataset and code release of the OpenRooms Dataset.

Visual Intelligence Lab of UCSD 95 Jan 08, 2023
[ICCV'21] NEAT: Neural Attention Fields for End-to-End Autonomous Driving

NEAT: Neural Attention Fields for End-to-End Autonomous Driving Paper | Supplementary | Video | Poster | Blog This repository is for the ICCV 2021 pap

254 Jan 02, 2023
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
Repository for open research on optimizers.

Open Optimizers Repository for open research on optimizers. This is a test in sharing research/exploration as it happens. If you use anything from thi

Ariel Ekgren 6 Jun 24, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022