This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

Overview

GHCF

This is our implementation of the paper:

Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2021. Graph Heterogeneous Multi-Relational Recommendation. In AAAI'21.

Please cite our AAAI'21 paper if you use our codes. Thanks!

@inproceedings{chen2021graph,
  title={Graph Heterogeneous Multi-Relational Recommendation},
  author={Chen, Chong and Ma, Weizhi and Zhang, Min and Wang, Zhaowei and He, Xiuqiang and Wang, Chenyang and Liu, Yiqun and Ma, Shaoping},
  booktitle={Proceedings of AAAI},
  year={2021},
}

Example to run the codes

Train and evaluate our model:

python GHCF.py

Reproducibility

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Suggestions for parameters

Several important parameters need to be tuned for different datasets, which are:

parser.add_argument('--wid', nargs='?', default='[0.1,0.1,0.1]',
                        help='negative weight, [0.1,0.1,0.1] for beibei, [0.01,0.01,0.01] for taobao')
parser.add_argument('--decay', type=float, default=10,
                        help='Regularization, 10 for beibei, 0.01 for taobao')
parser.add_argument('--coefficient', nargs='?', default='[0.0/6, 5.0/6, 1.0/6]',
                        help='Regularization, [0.0/6, 5.0/6, 1.0/6] for beibei, [1.0/6, 4.0/6, 1.0/6] for taobao')
parser.add_argument('--mess_dropout', nargs='?', default='[0.2]',
                        help='Keep probability w.r.t. message dropout, 0.2 for beibei and taobao')

Specifically, we suggest to tune "wid" among [0.001,0.005,0.01,0.02,0.05,0.1,0.2,0.5]. It's also acceptable to simply make the three weights the same, e.g., self.weight = [0.1, 0.1, 0.1] or self.weight = [0.01, 0.01, 0.01]. Generally, this parameter is related to the sparsity of dataset. If the dataset is more sparse, then a small value of negative_weight may lead to a better performance.

The coefficient parameter determines the importance of different tasks in multi-task learning. In our datasets, there are three loss coefficients λ 1 , λ 2 , and λ 3 . As λ 1 + λ 2 + λ 3 = 1, when λ 1 and λ 2 are given, the value of λ 3 is determined. We suggest to tune the three coefficients in [0, 1/6, 2/6, 3/6, 4/6, 5/6, 1].

Owner
Chong Chen
Tsinghua University
Chong Chen
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems.

Persine, the Persona Engine Persine is an automated tool to study and reverse-engineer algorithmic recommendation systems. It has a simple interface a

Jonathan Soma 87 Nov 29, 2022
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 02, 2023
This is our implementation of GHCF: Graph Heterogeneous Collaborative Filtering (AAAI 2021)

GHCF This is our implementation of the paper: Chong Chen, Weizhi Ma, Min Zhang, Zhaowei Wang, Xiuqiang He, Chenyang Wang, Yiqun Liu and Shaoping Ma. 2

Chong Chen 53 Dec 05, 2022
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
This is our Tensorflow implementation for "Graph-based Embedding Smoothing for Sequential Recommendation" (GES) (TKDE, 2021).

Graph-based Embedding Smoothing (GES) This is our Tensorflow implementation for the paper: Tianyu Zhu, Leilei Sun, and Guoqing Chen. "Graph-based Embe

Tianyu Zhu 15 Nov 29, 2022
Deep recommender models using PyTorch.

Spotlight uses PyTorch to build both deep and shallow recommender models. By providing both a slew of building blocks for loss functions (various poin

Maciej Kula 2.8k Dec 29, 2022
Bert4rec for news Recommendation

News-Recommendation-system-using-Bert4Rec-model Bert4rec for news Recommendation

saran pandian 2 Feb 04, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
QRec: A Python Framework for quick implementation of recommender systems (TensorFlow Based)

QRec is a Python framework for recommender systems (Supported by Python 3.7.4 and Tensorflow 1.14+) in which a number of influential and newly state-of-the-art recommendation models are implemented.

Yu 1.4k Dec 27, 2022
基于个性化推荐的音乐播放系统

MusicPlayer 基于个性化推荐的音乐播放系统 Hi, 这是我在大四的时候做的毕设,现如今将该项目开源。 本项目是基于Python的tkinter和pygame所著。 该项目总体来说,代码比较烂(因为当时水平很菜)。 运行的话安装几个基本库就能跑,只不过里面的数据还没有上传至Github。 先

Cedric Niu 6 Nov 19, 2022
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems

RecSim NG, a probabilistic platform for multi-agent recommender systems simulation. RecSimNG is a scalable, modular, differentiable simulator implemented in Edward2 and TensorFlow. It offers: a power

Google Research 110 Dec 16, 2022
Fast Python Collaborative Filtering for Implicit Feedback Datasets

Implicit Fast Python Collaborative Filtering for Implicit Datasets. This project provides fast Python implementations of several different popular rec

Ben Frederickson 3k Dec 31, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
A recommendation system for suggesting new books given similar books.

Book Recommendation System A recommendation system for suggesting new books given similar books. Datasets Dataset Kaggle Dataset Notebooks goodreads-E

Sam Partee 2 Jan 06, 2022
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022
An Efficient and Effective Framework for Session-based Social Recommendation

SEFrame This repository contains the code for the paper "An Efficient and Effective Framework for Session-based Social Recommendation". Requirements P

Tianwen CHEN 23 Oct 26, 2022