BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

Overview

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey
IEEE International Conference on Computer Vision (ICCV), 2021 (oral presentation)

Project page: https://chenhsuanlin.bitbucket.io/bundle-adjusting-NeRF
arXiv preprint: https://arxiv.org/abs/2104.06405

We provide PyTorch code for the NeRF experiments on both synthetic (Blender) and real-world (LLFF) datasets.


Prerequisites

This code is developed with Python3 (python3). PyTorch 1.9+ is required.
It is recommended use Anaconda to set up the environment. Install the dependencies and activate the environment barf-env with

conda env create --file requirements.yaml python=3
conda activate barf-env

Initialize the external submodule dependencies with

git submodule update --init --recursive

Dataset

  • Synthetic data (Blender) and real-world data (LLFF)

    Both the Blender synthetic data and LLFF real-world data can be found in the NeRF Google Drive. For convenience, you can download them with the following script: (under this repo)
    # Blender
    gdown --id 18JxhpWD-4ZmuFKLzKlAw-w5PpzZxXOcG # download nerf_synthetic.zip
    unzip nerf_synthetic.zip
    rm -f nerf_synthetic.zip
    mv nerf_synthetic data/blender
    # LLFF
    gdown --id 16VnMcF1KJYxN9QId6TClMsZRahHNMW5g # download nerf_llff_data.zip
    unzip nerf_llff_data.zip
    rm -f nerf_llff_data.zip
    mv nerf_llff_data data/llff
    The data directory should contain the subdirectories blender and llff. If you already have the datasets downloaded, you can alternatively soft-link them within the data directory.
  • iPhone (TODO)


Running the code

  • BARF models

    To train and evaluate BARF:

    # <GROUP> and <NAME> can be set to your likes, while <SCENE> is specific to datasets
    
    # Blender (<SCENE>={chair,drums,ficus,hotdog,lego,materials,mic,ship})
    python3 train.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]
    python3 evaluate.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --data.val_sub= --resume
    
    # LLFF (<SCENE>={fern,flower,fortress,horns,leaves,orchids,room,trex})
    python3 train.py --group=<GROUP> --model=barf --yaml=barf_llff --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]
    python3 evaluate.py --group=<GROUP> --model=barf --yaml=barf_llff --name=<NAME> --data.scene=<SCENE> --resume

    All the results will be stored in the directory output/<GROUP>/<NAME>. You may want to organize your experiments by grouping different runs in the same group.

    To train baseline models:

    • Full positional encoding: omit the --barf_c2f argument.
    • No positional encoding: add --arch.posenc!.

    If you want to evaluate a checkpoint at a specific iteration number, use --resume=<ITER_NUMBER> instead of just --resume.

  • Training the original NeRF

    If you want to train the reference NeRF models (assuming known camera poses):

    # Blender
    python3 train.py --group=<GROUP> --model=nerf --yaml=nerf_blender --name=<NAME> --data.scene=<SCENE>
    python3 evaluate.py --group=<GROUP> --model=nerf --yaml=nerf_blender --name=<NAME> --data.scene=<SCENE> --data.val_sub= --resume
    
    # LLFF
    python3 train.py --group=<GROUP> --model=nerf --yaml=nerf_llff --name=<NAME> --data.scene=<SCENE>
    python3 evaluate.py --group=<GROUP> --model=nerf --yaml=nerf_llff --name=<NAME> --data.scene=<SCENE> --resume

    If you wish to replicate the results from the original NeRF paper, use --yaml=nerf_blender_repr or --yaml=nerf_llff_repr instead for Blender or LLFF respectively. There are some differences, e.g. NDC will be used for the LLFF forward-facing dataset. (The reference NeRF models considered in the paper do not use NDC to parametrize the 3D points.)

  • Visualizing the results

    We have included code to visualize the training over TensorBoard and Visdom. The TensorBoard events include the following:

    • SCALARS: the rendering losses and PSNR over the course of optimization. For BARF, the rotational/translational errors with respect to the given poses are also computed.
    • IMAGES: visualization of the RGB images and the RGB/depth rendering.

    We also provide visualization of 3D camera poses in Visdom. Run visdom -port 9000 to start the Visdom server.
    The Visdom host server is default to localhost; this can be overridden with --visdom.server (see options/base.yaml for details). If you want to disable Visdom visualization, add --visdom!.


Codebase structure

The main engine and network architecture in model/barf.py inherit those from model/nerf.py. This codebase is structured so that it is easy to understand the actual parts BARF is extending from NeRF. It is also simple to build your exciting applications upon either BARF or NeRF -- just inherit them again! This is the same for dataset files (e.g. data/blender.py).

To understand the config and command lines, take the below command as an example:

python3 train.py --group=<GROUP> --model=barf --yaml=barf_blender --name=<NAME> --data.scene=<SCENE> --barf_c2f=[0.1,0.5]

This will run model/barf.py as the main engine with options/barf_blender.yaml as the main config file. Note that barf hierarchically inherits nerf (which inherits base), making the codebase customizable.
The complete configuration will be printed upon execution. To override specific options, add --<key>=value or --<key1>.<key2>=value (and so on) to the command line. The configuration will be loaded as the variable opt throughout the codebase.

Some tips on using and understanding the codebase:

  • The computation graph for forward/backprop is stored in var throughout the codebase.
  • The losses are stored in loss. To add a new loss function, just implement it in compute_loss() and add its weight to opt.loss_weight.<name>. It will automatically be added to the overall loss and logged to Tensorboard.
  • If you are using a multi-GPU machine, you can add --gpu=<gpu_number> to specify which GPU to use. Multi-GPU training/evaluation is currently not supported.
  • To resume from a previous checkpoint, add --resume=<ITER_NUMBER>, or just --resume to resume from the latest checkpoint.
  • (to be continued....)

If you find our code useful for your research, please cite

@inproceedings{lin2021barf,
  title={BARF: Bundle-Adjusting Neural Radiance Fields},
  author={Lin, Chen-Hsuan and Ma, Wei-Chiu and Torralba, Antonio and Lucey, Simon},
  booktitle={IEEE International Conference on Computer Vision ({ICCV})},
  year={2021}
}

Please contact me ([email protected]) if you have any questions!

Owner
Chen-Hsuan Lin
Research scientist @NVIDIA, PhD in Robotics @ CMU
Chen-Hsuan Lin
Code for the paper "Reinforced Active Learning for Image Segmentation"

Reinforced Active Learning for Image Segmentation (RALIS) Code for the paper Reinforced Active Learning for Image Segmentation Dependencies python 3.6

Arantxa Casanova 79 Dec 19, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method

C++/ROS Source Codes for "Autonomous Driving on Curvy Roads without Reliance on Frenet Frame: A Cartesian-based Trajectory Planning Method" published in IEEE Trans. Intelligent Transportation Systems

Bai Li 88 Dec 23, 2022
Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces. User Guide archABM is a fast and open source agent-

Vicomtech 10 Dec 05, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
Learning where to learn - Gradient sparsity in meta and continual learning

Learning where to learn - Gradient sparsity in meta and continual learning In this paper, we investigate gradient sparsity found by MAML in various co

Johannes Oswald 28 Dec 09, 2022
Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capability)

Protein GLM (wip) Implementation of a protein autoregressive language model, but with autoregressive infilling objective (editing subsequences capabil

Phil Wang 17 May 06, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
SSD-based Object Detection in PyTorch

SSD-based Object Detection in PyTorch 서강대학교 현대모비스 SW 프로그램에서 진행한 인공지능 프로젝트입니다. Jetson nano를 이용해 pre-trained network를 fine tuning시켜 차량 및 신호등 인식을 구현하였습니다

Haneul Kim 1 Nov 16, 2021
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Thomas Winters 36 Nov 15, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022