Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Overview

Introduction

Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper

Song Park1, Sanghyuk Chun2, 3, Junbum Cha3, Bado Lee3, Hyunjung Shim1
1 School of Integrated Technology, Yonsei university
2 NAVER AI Lab
3 NAVER CLOVA

A few-shot font generation (FFG) method has to satisfy two objectives: the generated images should preserve the underlying global structure of the target character and present the diverse local reference style. Existing FFG methods aim to disentangle content and style either by extracting a universal representation style or extracting multiple component-wise style representations. However, previous methods either fail to capture diverse local styles or cannot be generalized to a character with unseen components, e.g., unseen language systems. To mitigate the issues, we propose a novel FFG method, named Multiple Localized Experts Few-shot Font Generation Network (MX-Font). MX-Font extracts multiple style features not explicitly conditioned on component labels, but automatically by multiple experts to represent different local concepts, e.g., left-side sub-glyph. Owing to the multiple experts, MX-Font can capture diverse local concepts and show the generalizability to unseen languages. During training, we utilize component labels as weak supervision to guide each expert to be specialized for different local concepts. We formulate the component assign problem to each expert as the graph matching problem, and solve it by the Hungarian algorithm. We also employ the independence loss and the content-style adversarial loss to impose the content-style disentanglement. In our experiments, MX-Font outperforms previous state-of-the-art FFG methods in the Chinese generation and cross-lingual, e.g., Chinese to Korean, generation.

You can find more related projects on the few-shot font generation at the following links:


Prerequisites

conda install numpy scipy scikit-image tqdm jsonlib-python3 fonttools

Usage

Note that, we only provide the example font files; not the font files used for the training the provided weight (generator.pth). The example font files are downloaded from here.

Preparing Data

  • The examples of datasets are in (./data)

Font files (.ttf)

  • Prepare the TrueType font files(.ttf) to use for the training and the validation.
  • Put the training font files and validation font files into separate directories.

The text files containing the available characters of .ttf files (.txt)

  • If you have the available character list of a .ttf file, save its available characters list to a text file (.txt) with the same name in the same directory with the ttf file.
    • (example) TTF file: data/ttfs/train/MaShanZheng-Regular.ttf, its available characters: data/ttfs/train/MaShanZheng-Regular.txt
  • You can also generate the available characters files automatically using the get_chars_from_ttf.py
# Generating the available characters file

python get_chars_from_ttf.py --root_dir path/to/ttf/dir
  • --root_dir: The root directory to find the .ttf files. All the .ttf files under this directory and its subdirectories will be processed.

The json files with decomposition information (.json)

  • The files for the decomposition information are needed.
    • The files for the Chinese characters are provided. (data/chn_decomposition.json, data/primals.json)
    • If you want to train the model with a language other than Chinese, the files for the decomposition rule (see below) are also needed.
      • Decomposition rule
        • structure: dict (in json format)
        • format: {char: [list of components]}
        • example: {'㐬': ['亠', '厶', '川'], '㐭': ['亠', '囗', '口']}
      • Primals
        • structure: list (in json format)
        • format: [All the components in the decomposition rule file]
        • example: ['亠', '厶', '川', '囗', '口']

Training

Modify the configuration file (cfgs/train.yaml)

- use_ddp:  whether to use DataDistributedParallel, for multi-GPUs.
- port:  the port for the DataDistributedParallel training.

- work_dir:  the directory to save checkpoints, validation images, and the log.
- decomposition:  path to the "decomposition rule" file.
- primals:  path to the "primals" file.

- dset:  (leave blank)
  - train:  (leave blank)
    - data_dir : path to .ttf files for the training
  - val: (leave blank)
    - data_dir : path to .ttf files for the validation
    - source_font : path to .ttf file used as the source font during the validation

Run training

python train.py cfgs/train.yaml
  • arguments
    • path/to/config (first argument): path to configration file.
    • --resume (optional) : path to checkpoint to resume.

Test

Preparing the reference images

  • Prepare the reference images and the .ttf file to use as the source font.
  • The reference images are should be placed in this format:
    * data_dir
    |-- font1
        |-- char1.png
        |-- char2.png
        |-- char3.png
    |-- font2
        |-- char1.png
        |-- char2.png
            .
            .
            .
  • The names of the directory or the image files are not important, however, the images with the same reference style are should be grouped with the same directory.
  • If you want to generate only specific characters, prepare the file containing the list of the characters to generate.
    • The example file is provided. (data/chn_gen.json)

Modify the configuration file (cfgs/eval.yaml)

- dset:  (leave blank)
  - test:  (leave blank)
    - data_dir: path to reference images
    - source_font: path to .ttf file used as the source font during the generation
    - gen_chars_file: path to file of the characters to generate. Leave blank if you want to generate all the available characters in the source font.

Run test

python eval.py \
    cfgs/eval.yaml \
    --weight generator.pth \
    --result_dir path/to/save/images
  • arguments
    • path/to/config (first argument): path to configration file.
    • --weight : path to saved weight to test.
    • --result_dir: path to save generated images.

Code license

This project is distributed under MIT license, except modules.py which is adopted from https://github.com/NVlabs/FUNIT.

MX-Font
Copyright (c) 2021-present NAVER Corp.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Acknowledgement

This project is based on clovaai/dmfont and clovaai/lffont.

How to cite

@article{park2021mxfont,
    title={Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts},
    author={Park, Song and Chun, Sanghyuk and Cha, Junbum and Lee, Bado and Shim, Hyunjung},
    year={2021},
    journal={arXiv preprint arXiv:2104.00887},
}
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

CIFAR-10_train-test - training and testing codes for dataset CIFAR-10

Frederick Wang 3 Apr 26, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
Source code for the NeurIPS 2021 paper "On the Second-order Convergence Properties of Random Search Methods"

Second-order Convergence Properties of Random Search Methods This repository the paper "On the Second-order Convergence Properties of Random Search Me

Adamos Solomou 0 Nov 13, 2021
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
FrankMocap: A Strong and Easy-to-use Single View 3D Hand+Body Pose Estimator

FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and bo

Facebook Research 1.9k Jan 07, 2023
Light-Head R-CNN

Light-head R-CNN Introduction We release code for Light-Head R-CNN. This is my best practice for my research. This repo is organized as follows: light

jemmy li 835 Dec 06, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Database

Python cx_Oracle Notebooks, 2022 The repository contains Jupyter notebooks showing best practices for using cx_Oracle, the Python DB API for Oracle Da

Christopher Jones 13 Dec 15, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021