Official PyTorch Implementation for "Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes"

Overview

PVDNet: Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes

License CC BY-NC

This repository contains the official PyTorch implementation of the following paper:

Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes
Hyeongseok Son, Junyong Lee, Jonghyeop Lee, Sunghyun Cho, Seungyong Lee, TOG 2021 (presented at SIGGRAPH 2021)

About the Research

Click here

Overall Framework

Our video deblurring framework consists of three modules: a blur-invariant motion estimation network (BIMNet), a pixel volume generator, and a pixel volume-based deblurring network (PVDNet). We first train BIMNet; after it has converged, we combine the two networks with the pixel volume generator. We then fix the parameters of BIMNet and train PVDNet by training the entire network.

Blur-Invariant Motion Estimation Network (BIMNet)

To estimate motion between frames accurately, we adopt LiteFlowNet and train it with a blur-invariant loss so that the trained network can estimate blur-invariant optical flow between frames. We train BIMNet with a blur-invariant loss , which is defined as (refer Eq. 1 in the main paper):

The figure shows a qualitative comparison of different optical flow methods. The results of the other methods contain severely distorted structures due to errors in their optical flow maps. In contrast, the results of BIMNets show much less distortions.

Pixel Volume for Motion Compensation

We propose a novel pixel volume that provides multiple candidates for matching pixels between images. Moreover, a pixel volume provides an additional cue for motion compensation based on the majority.

Our pixel volume approach leads to the performance improvement of video deblurring by utilizing the multiple candidates in a pixel volume in two aspects: 1) in most cases, the majority cue for the correct match would help as the statistics (Sec. 4.4 in the main paper) shows, and 2) in other cases, PVDNet would exploit multiple candidates to estimate the correct match referring to nearby pixels with majority cues.

Getting Started

Prerequisites

Tested environment

Ubuntu18.04 Python 3.8.8 PyTorch 1.8.0 CUDA 10.2

  1. Environment setup

    $ git clone https://github.com/codeslake/PVDNet.git
    $ cd PVDNet
    
    $ conda create -y --name PVDNet python=3.8 && conda activate PVDNet
    # for CUDA10.2
    $ sh install_CUDA10.2.sh
    # for CUDA11.1
    $ sh install_CUDA11.1.sh
  2. Datasets

    • Download and unzip Su et al.'s dataset and Nah et al.'s dataset under [DATASET_ROOT]:

      ├── [DATASET_ROOT]
      │   ├── train_DVD
      │   ├── test_DVD
      │   ├── train_nah
      │   ├── test_nah
      

      Note:

      • [DATASET_ROOT] is currently set to ./datasets/video_deblur. It can be specified by modifying config.data_offset in ./configs/config.py.
  3. Pre-trained models

    • Download and unzip pretrained weights under ./ckpt/:

      ├── ./ckpt
      │   ├── BIMNet.pytorch
      │   ├── PVDNet_DVD.pytorch
      │   ├── PVDNet_nah.pytorch
      │   ├── PVDNet_large_nah.pytorch
      

Testing models of TOG2021

For PSNRs and SSIMs reported in the paper, we use the approach of Koehler et al. following Su et al., that first aligns two images using global translation to represent the ambiguity in the pixel location caused by blur.
Refer here for the evaluation code.

## Table 4 in the main paper (Evaluation on Su etal's dataset)
# Our final model 
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_DVD --config config_PVDNet --data DVD --ckpt_abs_name ckpt/PVDNet_DVD.pytorch

## Table 5 in the main paper (Evaluation on Nah etal's dataset)
# Our final model 
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_nah --config config_PVDNet --data nah --ckpt_abs_name ckpt/PVDNet_nah.pytorch

# Larger model
CUDA_VISIBLE_DEVICES=0 python run.py --mode PVDNet_large_nah --config config_PVDNet_large --data nah --ckpt_abs_name ckpt/PVDNet_large_nah.pytorch

Note:

  • Testing results will be saved in [LOG_ROOT]/PVDNet_TOG2021/[mode]/result/quanti_quali/[mode]_[epoch]/[data]/.
  • [LOG_ROOT] is set to ./logs/ by default. Refer here for more details about the logging.
  • options
    • --data: The name of a dataset to evaluate: DVD | nah | random. Default: DVD
      • The data structure can be modified in the function set_eval_path(..) in ./configs/config.py.
      • random is for testing models with any video frames, which should be placed as [DATASET_ROOT]/random/[video_name]/*.[jpg|png].

Wiki

Citation

If you find this code useful, please consider citing:

@artical{Son_2021_TOG,
    author = {Son, Hyeongseok and Lee, Junyong and Lee, Jonghyeop and Cho, Sunghyun and Lee, Seungyong},
    title = {Recurrent Video Deblurring with Blur-Invariant Motion Estimation and Pixel Volumes},
    journal = {ACM Transactions on Graphics},
    year = {2021}
}

Contact

Open an issue for any inquiries. You may also have contact with [email protected] or [email protected]

Resources

All material related to our paper is available by following links:

Link
The main paper
arXiv
Supplementary Files
Checkpoint Files
Su et al [2017]'s dataset (reference)
Nah et al. [2017]'s dataset (reference)

License

This software is being made available under the terms in the LICENSE file.

Any exemptions to these terms require a license from the Pohang University of Science and Technology.

About Coupe Project

Project ‘COUPE’ aims to develop software that evaluates and improves the quality of images and videos based on big visual data. To achieve the goal, we extract sharpness, color, composition features from images and develop technologies for restoring and improving by using them. In addition, personalization technology through user reference analysis is under study.

Please check out other Coupe repositories in our Posgraph github organization.

Useful Links

Owner
Junyong Lee
Ph.D candidate at POSTECH
Junyong Lee
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening

Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening Introduction This is an implementation of the model used for breast

757 Dec 30, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
For medical image segmentation

LeViT_UNet For medical image segmentation Our model is based on LeViT (https://github.com/facebookresearch/LeViT). You'd better gitclone its codes. Th

13 Dec 24, 2022
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Personals scripts using ageitgey/face_recognition

HOW TO USE pip3 install requirements.txt Add some pictures of known people in the folder 'people' : a) Create a folder called by the name of the perso

Antoine Bollengier 1 Jan 06, 2022
Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classification (NeurIPS 2021)

Graph Posterior Network This is the official code repository to the paper Graph Posterior Network: Bayesian Predictive Uncertainty for Node Classifica

Maximilian Stadler 30 Dec 05, 2022
StocksMA is a package to facilitate access to financial and economic data of Moroccan stocks.

Creating easier access to the Moroccan stock market data What is StocksMA ? StocksMA is a package to facilitate access to financial and economic data

Salah Eddine LABIAD 28 Jan 04, 2023
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Crawl & visualize ICLR papers and reviews

Crawl and Visualize ICLR 2022 OpenReview Data Descriptions This Jupyter Notebook contains the data crawled from ICLR 2022 OpenReview webpages and thei

Federico Berto 75 Dec 05, 2022
A web application that provides real time temperature and humidity readings of a house.

About A web application which provides real time temperature and humidity readings of a house. If you're interested in the data collected so far click

Ben Thompson 3 Jan 28, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
A modular framework for vision & language multimodal research from Facebook AI Research (FAIR)

MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-t

Facebook Research 5.1k Jan 04, 2023
General Vision Benchmark, a project from OpenGVLab

Introduction We build GV-B(General Vision Benchmark) on Classification, Detection, Segmentation and Depth Estimation including 26 datasets for model e

174 Dec 27, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
Marine debris detection with commercial satellite imagery and deep learning.

Marine debris detection with commercial satellite imagery and deep learning. Floating marine debris is a global pollution problem which threatens mari

Inter Agency Implementation and Advanced Concepts 56 Dec 16, 2022