Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity".

Overview

Impression-Learning-Camera-Ready

Camera ready code repo for the NeuRIPS 2021 paper: "Impression learning: Online representation learning with synaptic plasticity," by Colin Bredenberg, Benjamin S. H. Lyo, Eero P. Simoncelli, and Cristina Savin.

Requirements

-numpy

-time

-os

-copy

-deepcopy

-re

-matplotlib.pyplot

-pickle

-scipy

For the Free Spoken Digits Dataset simulations: -librosa

For the backpropagation implementation: -pytorch (https://pytorch.org/)

Instructions

In what follows, we will summarize how to reproduce the results of our paper with the code. Though some of our results require a cluster, our primary results (training + figure generation) can be completed in ~5-10 minutes on a personal computer.

Experimental Parameters (il_exp_params.py) This file specifies the particular type of simulation to run, and selects simulation hyperparameters accordingly.

To generate Figure 1 (~5 min runtime): set mode = 'standard'. This can be run on a local computer.

To generate Figure 2: set mode = 'SNR' (Fig. 2a-c) or set mode = 'dimensionality' (Fig. 2d). This will require a cluster.

To generate Figure 3: set mode = 'switch_period'. This will require a cluster.

To generate Figure 4 (~8 min runtime): set mode = 'Vocal_Digits'. This can be run on a local computer. Running this simulation will require librosa, as well as our preprocessed dataset (See Preprocessing FSDD).

To save data after a simulation, set save = True

Running a simulation (impression_learning.py) To run a simulation, simply run impression_learning.py after setting experimental parameters appropriately.

Plotting (il_plot_generator.py) To plot data after a simulation, simply run il_plot_generator.py. We ran these files consecutively in an IDE (e.g. Spyder). To save the results of a simulation, set image_save = True, which will save images in your local directory.

Backpropagation controls: We used Pytorch to separately train our backpropagation control, which has its own experimental parameters.

Experimental Parameters (il_exp_params_bp.py): array_num determines the dimensionality of the latent space.

Running a simulation and generating plots (il_backprop.py):

To run a simulation, simply run il_backprop.py. Plots for the chosen dimensionality will automatically be produced at the end of simulation.

Preprocessing the Free Spoken Digits Dataset (FSDD) (il_fsdd_preprocessing.py) For Figure 4 we generate spectrograms from the FSDD. Generating this plot will require our preprocessed data, run on the data from the FSDD (https://github.com/Jakobovski/free-spoken-digit-dataset). To preprocess the data, set your folder path to the location of your downloaded FSDD recordings folder, and set your output path to the location of your downloaded Impression Learning code. All that remains is to run the il_fsdd_preprocessing.py file (~5 min runtime).

Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-art fuzzing techniques

About Fuzzification Fuzzification helps developers protect the released, binary-only software from attackers who are capable of applying state-of-the-

gts3.org (<a href=[email protected])"> 55 Oct 25, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Parameterising Simulated Annealing for the Travelling Salesman Problem

Parameterising Simulated Annealing for the Travelling Salesman Problem

Gary Sun 55 Jun 15, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
[ICCV 2021 Oral] Mining Latent Classes for Few-shot Segmentation

Mining Latent Classes for Few-shot Segmentation Lihe Yang, Wei Zhuo, Lei Qi, Yinghuan Shi, Yang Gao. This codebase contains baseline of our paper Mini

Lihe Yang 66 Nov 29, 2022
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
[CVPR 2021] Forecasting the panoptic segmentation of future video frames

Panoptic Segmentation Forecasting Colin Graber, Grace Tsai, Michael Firman, Gabriel Brostow, Alexander Schwing - CVPR 2021 [Link to paper] We propose

Niantic Labs 44 Nov 29, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
An implementation for `Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction`

Text2Event An implementation for Text2Event: Controllable Sequence-to-Structure Generation for End-to-end Event Extraction Please contact Yaojie Lu (@

Roger 153 Jan 07, 2023
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
Code for the paper "Adversarial Generator-Encoder Networks"

This repository contains code for the paper "Adversarial Generator-Encoder Networks" (AAAI'18) by Dmitry Ulyanov, Andrea Vedaldi, Victor Lempitsky. Pr

Dmitry Ulyanov 279 Jun 26, 2022
Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure.

Event Queue Dialect Event queue (Equeue) dialect is an MLIR Dialect that models concurrent devices in terms of control and structure. Motivation The m

Cornell Capra 23 Dec 08, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
Light-SERNet: A lightweight fully convolutional neural network for speech emotion recognition

Light-SERNet This is the Tensorflow 2.x implementation of our paper "Light-SERNet: A lightweight fully convolutional neural network for speech emotion

Arya Aftab 29 Nov 12, 2022
Air Quality Prediction Using LSTM

AirQualityPredictionUsingLSTM In this Repo, i present to you the winning solution of smart gujarat hackathon 2019 where the task was to predict the qu

Deepak Nandwani 2 Dec 13, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022