UMPNet: Universal Manipulation Policy Network for Articulated Objects

Overview

UMPNet: Universal Manipulation Policy Network for Articulated Objects

Zhenjia Xu, Zhanpeng He, Shuran Song
Columbia University
Robotics and Automation Letters (RA-L) / ICRA 2022

Project Page | Video | arXiv

Overview

This repo contains the PyTorch implementation for paper "UMPNet: Universal Manipulation Policy Network for Articulated Objects".

teaser

Content

Prerequisites

The code is built with Python 3.6. Libraries are listed in requirements.txt and can be installed with pip by:

pip install -r requirements.txt

Data Preparation

Prepare object URDF and pretrained model.

Download, unzip, and organize as follows:

/umpnet
    /mobility_dataset
    /pretrained
    ...

Testing

Test with GUI

There are also two modes of testing: exploration and manipulation.

# Open-ended state exploration
python test_gui.py --mode exploration --category CATEGORY

# Goal conditioned manipulation
python test_gui.py --mode manipulation --category CATEGORY

Here CATEGORY can be chosen from:

  • training categories]: Refrigerator, FoldingChair, Laptop, Stapler, TrashCan, Microwave, Toilet, Window, StorageFurniture, Switch, Kettle, Toy
  • [Testing categories]: Box, Phone, Dishwasher, Safe, Oven, WashingMachine, Table, KitchenPot, Bucket, Door

teaser

Quantitative Evaluation

There are also two modes of testing: exploration and manipulation.

# Open-ended state exploration
python test_quantitative.py --mode exploration

# Goal conditioned manipulation
python test_quantitative.py --mode manipulation

By default, it will run quantitative evaluation for each category. You can modify pool_list(L91) to run evaluation for a specific category.

Training

Hyper-parameters mentioned in paper are provided in default arguments.

python train.py --exp EXP_NAME

Then a directory will be created at exp/EXP_NAME, in which checkpoints, visualization, and replay buffer will be stored.

BibTeX

@article{xu2022umpnet,
  title={UMPNet: Universal manipulation policy network for articulated objects},
  author={Xu, Zhenjia and Zhanpeng, He and Song, Shuran},
  journal={IEEE Robotics and Automation Letters},
  year={2022},
  publisher={IEEE}
}

License

This repository is released under the MIT license. See LICENSE for additional details.

Acknowledgement

Owner
Columbia Artificial Intelligence and Robotics Lab
We develop algorithms that enable intelligent systems to learn from their interactions with the physical world to execute complex tasks and assist people
Columbia Artificial Intelligence and Robotics Lab
Large scale PTM - PPI relation extraction

Large-scale protein-protein post-translational modification extraction with distant supervision and confidence calibrated BioBERT The silver standard

1 Feb 25, 2022
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Machine learning framework for both deep learning and traditional algorithms

NeoML is an end-to-end machine learning framework that allows you to build, train, and deploy ML models. This framework is used by ABBYY engineers for

NeoML 704 Dec 27, 2022
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Convert onnx models to pytorch.

onnx2torch onnx2torch is an ONNX to PyTorch converter. Our converter: Is easy to use – Convert the ONNX model with the function call convert; Is easy

ENOT 264 Dec 30, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
Instance-wise Feature Importance in Time (FIT)

Instance-wise Feature Importance in Time (FIT) FIT is a framework for explaining time series perdiction models, by assigning feature importance to eve

Sana 46 Dec 25, 2022
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Revisiting Weakly Supervised Pre-Training of Visual Perception Models

SWAG: Supervised Weakly from hashtAGs This repository contains SWAG models from the paper Revisiting Weakly Supervised Pre-Training of Visual Percepti

Meta Research 134 Jan 05, 2023
You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks.

AllSet This is the repo for our paper: You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks. We prepared all codes and a subse

Jianhao 51 Dec 24, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
A style-based Quantum Generative Adversarial Network

Style-qGAN A style based Quantum Generative Adversarial Network (style-qGAN) model for Monte Carlo event generation. Tutorial We have prepared a noteb

9 Nov 24, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Codes for our paper "SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge" (EMNLP 2020)

SentiLARE: Sentiment-Aware Language Representation Learning with Linguistic Knowledge Introduction SentiLARE is a sentiment-aware pre-trained language

74 Dec 30, 2022
PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

PyTorch code for DriveGAN: Towards a Controllable High-Quality Neural Simulation

76 Dec 24, 2022