[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

Overview

TubeDETR: Spatio-Temporal Video Grounding with Transformers

WebsiteSTVG DemoPaper

PWC PWC PWC

This repository provides the code for our paper. This includes:

  • Software setup, data downloading and preprocessing instructions for the VidSTG, HC-STVG1 and HC-STVG2.0 datasets
  • Training scripts and pretrained checkpoints
  • Evaluation scripts and demo

Setup

Download FFMPEG and add it to the PATH environment variable. The code was tested with version ffmpeg-4.2.2-amd64-static. Then create a conda environment and install the requirements with the following commands:

conda create -n tubedetr_env python=3.8
conda activate tubedetr_env
pip install -r requirements.txt

Data Downloading

Setup the paths where you are going to download videos and annotations in the config json files.

VidSTG: Download VidOR videos and annotations from the VidOR dataset providers. Then download the VidSTG annotations from the VidSTG dataset providers. The vidstg_vid_path folder should contain a folder video containing the unzipped video folders. The vidstg_ann_path folder should contain both VidOR and VidSTG annotations.

HC-STVG: Download HC-STVG1 and HC-STVG2.0 videos and annotations from the HC-STVG dataset providers. The hcstvg_vid_path folder should contain a folder video containing the unzipped video folders. The hcstvg_ann_path folder should contain both HC-STVG1 and HC-STVG2.0 annotations.

Data Preprocessing

To preprocess annotation files, run:

python preproc/preproc_vidstg.py
python preproc/preproc_hcstvg.py
python preproc/preproc_hcstvgv2.py

Training

Download pretrained RoBERTa tokenizer and model weights in the TRANSFORMERS_CACHE folder. Download pretrained ResNet-101 model weights in the TORCH_HOME folder. Download MDETR pretrained model weights with ResNet-101 backbone in the current folder.

VidSTG To train on VidSTG, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=vidstg --combine_datasets_val=vidstg \
--dataset_config config/vidstg.json --output-dir=OUTPUT_DIR

HC-STVG2.0 To train on HC-STVG2.0, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--v2 --dataset_config config/hcstvg.json --epochs=20 --output-dir=OUTPUT_DIR

HC-STVG1 To train on HC-STVG1, run:

python -m torch.distributed.launch --nproc_per_node=NUM_GPUS --use_env main.py --ema \
--load=pretrained_resnet101_checkpoint.pth --combine_datasets=hcstvg --combine_datasets_val=hcstvg \
--dataset_config config/hcstvg.json --epochs=40 --eval_skip=40 --output-dir=OUTPUT_DIR

Baselines

  • To remove time encoding, add --no_time_embed.
  • To remove the temporal self-attention in the space-time decoder, add --no_tsa.
  • To train from ImageNet initialization, pass an empty string to the argument --load and add --sted_loss_coef=5 --lr=2e-5 --text_encoder_lr=2e-5 --epochs=20 --lr_drop=20 for VidSTG or --epochs=60 --lr_drop=60 for HC-STVG1.
  • To train with a randomly initalized temporal self-attention, add --rd_init_tsa.
  • To train with a different spatial resolution (e.g. res=352) or temporal stride (e.g. k=4), add --resolution=224 or --stride=5.
  • To train with the slow-only variant, add --no_fast.
  • To train with alternative designs for the fast branch, add --fast=VARIANT.

Available Checkpoints

Training data parameters url size
MDETR init + VidSTG k=4 res=352 Drive 3.0GB
MDETR init + VidSTG k=2 res=224 Drive 3.0GB
ImageNet init + VidSTG k=4 res=352 Drive 3.0GB
MDETR init + HC-STVG2.0 k=4 res=352 Drive 3.0GB
MDETR init + HC-STVG2.0 k=2 res=224 Drive 3.0GB
MDETR init + HC-STVG1 k=4 res=352 Drive 3.0GB
ImageNet init + HC-STVG1 k=4 res=352 Drive 3.0GB

Evaluation

For evaluation only, simply run the same commands as for training with --resume=CHECKPOINT --eval. For this to be done on the test set, add --test (in this case predictions and attention weights are also saved).

Spatio-Temporal Video Grounding Demo

You can also use a pretrained model to infer a spatio-temporal tube on a video of your choice (VIDEO_PATH with potential START and END timestamps) given the natural language query of your choice (CAPTION) with the following command:

python demo_stvg.py --load=CHECKPOINT --caption_example CAPTION --video_example VIDEO_PATH --start_example=START --end_example=END --output-dir OUTPUT_PATH

Note that we also host an online demo at this link, the code of which is available at server_stvg.py and server_stvg.html.

Acknowledgements

This codebase is built on the MDETR codebase. The code for video spatial data augmentation is inspired by torch_videovision.

Citation

If you found this work useful, consider giving this repository a star and citing our paper as followed:

@inproceedings{yang2022tubedetr,
title={TubeDETR: Spatio-Temporal Video Grounding with Transformers},
author={Yang, Antoine and Miech, Antoine and Sivic, Josef and Laptev, Ivan and Schmid, Cordelia},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2022}}
Owner
Antoine Yang
PhD Student in Computer Vision at Inria Paris
Antoine Yang
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
MicRank is a Learning to Rank neural channel selection framework where a DNN is trained to rank microphone channels.

MicRank: Learning to Rank Microphones for Distant Speech Recognition Application Scenario Many applications nowadays envision the presence of multiple

Samuele Cornell 20 Nov 10, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

Shuyang Sun 117 Dec 11, 2022
Ranking Models in Unlabeled New Environments (iccv21)

Ranking Models in Unlabeled New Environments Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch 1.7.0 + torchivision 0.8.1

14 Dec 17, 2021
Contrastive Learning with Non-Semantic Negatives

Contrastive Learning with Non-Semantic Negatives This repository is the official implementation of Robust Contrastive Learning Using Negative Samples

39 Jul 31, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Deep Unsupervised Image Hashing by Maximizing Bit Entropy This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hash

62 Dec 30, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Build and run Docker containers leveraging NVIDIA GPUs

NVIDIA Container Toolkit Introduction The NVIDIA Container Toolkit allows users to build and run GPU accelerated Docker containers. The toolkit includ

NVIDIA Corporation 15.6k Jan 01, 2023
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022