[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

Overview

GP-UNIT - Official PyTorch Implementation

This repository provides the official PyTorch implementation for the following paper:

Unsupervised Image-to-Image Translation with Generative Prior
Shuai Yang, Liming Jiang, Ziwei Liu and Chen Change Loy
In CVPR 2022.
Project Page | Paper | Supplementary Video

Abstract: Unsupervised image-to-image translation aims to learn the translation between two visual domains without paired data. Despite the recent progress in image translation models, it remains challenging to build mappings between complex domains with drastic visual discrepancies. In this work, we present a novel framework, Generative Prior-guided UNsupervised Image-to-image Translation (GP-UNIT), to improve the overall quality and applicability of the translation algorithm. Our key insight is to leverage the generative prior from pre-trained class-conditional GANs (e.g., BigGAN) to learn rich content correspondences across various domains. We propose a novel coarse-to-fine scheme: we first distill the generative prior to capture a robust coarse-level content representation that can link objects at an abstract semantic level, based on which fine-level content features are adaptively learned for more accurate multi-level content correspondences. Extensive experiments demonstrate the superiority of our versatile framework over state-of-the-art methods in robust, high-quality and diversified translations, even for challenging and distant domains.

Updates

  • [03/2022] Paper and supplementary video are released.
  • [04/2022] Code and dataset are released.
  • [03/2022] This website is created.

Installation

Clone this repo:

git clone https://github.com/williamyang1991/GP-UNIT.git
cd GP-UNIT

Dependencies:

We have tested on:

  • CUDA 10.1
  • PyTorch 1.7.0
  • Pillow 8.0.1; Matplotlib 3.3.3; opencv-python 4.4.0; Faiss 1.7.0; tqdm 4.54.0

All dependencies for defining the environment are provided in environment/gpunit_env.yaml. We recommend running this repository using Anaconda:

conda env create -f ./environment/gpunit_env.yaml

We use CUDA 10.1 so it will install PyTorch 1.7.0 (corresponding to Line 16, Line 113, Line 120, Line 121 of gpunit_env.yaml). Please install PyTorch that matches your own CUDA version following https://pytorch.org/.


(1) Dataset Preparation

Human face dataset, animal face dataset and aristic human face dataset can be downloaded from their official pages. Bird, dog and car datasets can be built from ImageNet with our provided script.

Task Used Dataset
Male←→Female CelebA-HQ: divided into male and female subsets by StarGANv2
Dog←→Cat←→Wild AFHQ provided by StarGANv2
Face←→Cat or Dog CelebA-HQ and AFHQ
Bird←→Dog 4 classes of birds and 4 classes of dogs in ImageNet291. Please refer to dataset preparation for building ImageNet291 from ImageNet
Bird←→Car 4 classes of birds and 4 classes of cars in ImageNet291. Please refer to dataset preparation for building ImageNet291 from ImageNet
Face→MetFace CelebA-HQ and MetFaces

(2) Inference for Latent-Guided and Exemplar-Guided Translation

Inference Notebook


To help users get started, we provide a Jupyter notebook at ./notebooks/inference_playground.ipynb that allows one to visualize the performance of GP-UNIT. The notebook will download the necessary pretrained models and run inference on the images in ./data/.

Web Demo

Try Replicate web demo here Replicate

Pretrained Models

Pretrained models can be downloaded from Google Drive or Baidu Cloud (access code: cvpr):

Task Pretrained Models
Prior Distillation content encoder
Male←→Female generators for male2female and female2male
Dog←→Cat←→Wild generators for dog2cat, cat2dog, dog2wild, wild2dog, cat2wild and wild2cat
Face←→Cat or Dog generators for face2cat, cat2face, dog2face and face2dog
Bird←→Dog generators for bird2dog and dog2bird
Bird←→Car generators for bird2car and car2bird
Face→MetFace generator for face2metface

The saved checkpoints are under the following folder structure:

checkpoint
|--content_encoder.pt     % Content encoder
|--bird2car.pt            % Bird-to-Car translation model
|--bird2dog.pt            % Bird-to-Dog translation model
...

Latent-Guided Translation

Translate a content image to the target domain with randomly sampled latent styles:

python inference.py --generator_path PRETRAINED_GENERATOR_PATH --content_encoder_path PRETRAINED_ENCODER_PATH \ 
                    --content CONTENT_IMAGE_PATH --batch STYLE_NUMBER --device DEVICE

By default, the script will use .\checkpoint\dog2cat.pt as PRETRAINED_GENERATOR_PATH, .\checkpoint\content_encoder.pt as PRETRAINED_ENCODER_PATH, and cuda as DEVICE for using GPU. For running on CPUs, use --device cpu.

Take Dog→Cat as an example, run:

python inference.py --content ./data/afhq/images512x512/test/dog/flickr_dog_000572.jpg --batch 6

Six results translation_flickr_dog_000572_N.jpg (N=0~5) are saved in the folder .\output\. An corresponding overview image translation_flickr_dog_000572_overview.jpg is additionally saved to illustrate the input content image and the six results:

Evaluation Metrics: We use the code of StarGANv2 to calculate FID and Diversity with LPIPS in our paper.

Exemplar-Guided Translation

Translate a content image to the target domain in the style of a style image by additionally specifying --style:

python inference.py --generator_path PRETRAINED_GENERATOR_PATH --content_encoder_path PRETRAINED_ENCODER_PATH \ 
                    --content CONTENT_IMAGE_PATH --style STYLE_IMAGE_PATH --device DEVICE

Take Dog→Cat as an example, run:

python inference.py --content ./data/afhq/images512x512/test/dog/flickr_dog_000572.jpg --style ./data/afhq/images512x512/test/cat/flickr_cat_000418.jpg

The result translation_flickr_dog_000572_to_flickr_cat_000418.jpg is saved in the folder .\output\. An corresponding overview image translation_flickr_dog_000572_to_flickr_cat_000418_overview.jpg is additionally saved to illustrate the input content image, the style image, and the result:

Another example of Cat→Wild, run:

python inference.py --generator_path ./checkpoint/cat2wild.pt --content ./data/afhq/images512x512/test/cat/flickr_cat_000418.jpg --style ./data/afhq/images512x512/test/wild/flickr_wild_001112.jpg

The overview image is as follows:


(3) Training GP-UNIT

Download the supporting models to the ./checkpoint/ folder:

Model Description
content_encoder.pt Our pretrained content encoder which distills BigGAN prior from the synImageNet291 dataset.
model_ir_se50.pth Pretrained IR-SE50 model taken from TreB1eN for ID loss.

Train Image-to-Image Transaltion Network

python train.py --task TASK --batch BATCH_SIZE --iter ITERATIONS \
                --source_paths SPATH1 SPATH2 ... SPATHS --source_num SNUM1 SNUM2 ... SNUMS \
                --target_paths TPATH1 TPATH2 ... TPATHT --target_num TNUM1 TNUM2 ... TNUMT

where SPATH1~SPATHS are paths to S folders containing images from the source domain (e.g., S classes of ImageNet birds), SNUMi is the number of images in SPATHi used for training. TPATHi, TNUMi are similarily defined but for the target domain. By default, BATCH_SIZE=16 and ITERATIONS=75000. If --source_num/--target_num is not specified, all images in the folders are used.

The trained model is saved as ./checkpoint/TASK-ITERATIONS.pt. Intermediate results are saved in ./log/TASK/.

This training does not necessarily lead to the optimal results, which can be further customized with additional command line options:

  • --style_layer (default: 4): the discriminator layer to compute the feature matching loss. We found setting style_layer=5 gives better performance on human faces.
  • --use_allskip (default: False): whether using dynamic skip connections to compute the reconstruction loss. For tasks involving close domains like gender translation, season transfer and face stylization, using use_allskip gives better results.
  • --use_idloss (default: False): whether using the identity loss. For Cat/Dog→Face and Face→MetFace tasks, we use this loss.
  • --not_flip_style (default: False): whether not randomly flipping the style image when extracting the style feature. Random flipping prevents the network to learn position information from the style image.
  • --mitigate_style_bias(default: False): whether resampling style features when training the sampling network. For imbalanced dataset that has minor groups, mitigate_style_bias oversamples those style features that are far from the mean style feature of the whole dataset. This leads to more diversified latent-guided translation at the cost of slight image quality degradation. We use it on CelebA-HQ and AFHQ-related tasks.

Here are some examples:
(Parts of our tasks require the ImageNet291 dataset. Please refer to data preparation)

Male→Female

python train.py --task male2female --source_paths ./data/celeba_hq/train/male --target_paths ./data/celeba_hq/train/female --style_layer 5 --mitigate_style_bias --use_allskip --not_flip_style

Cat→Dog

python train.py --task cat2dog --source_paths ./data/afhq/images512x512/train/cat --source_num 4000 --target_paths ./data/afhq/images512x512/train/dog --target_num 4000 --mitigate_style_bias

Cat→Face

python train.py --task cat2face --source_paths ./data/afhq/images512x512/train/cat --source_num 4000 --target_paths ./data/ImageNet291/train/1001_face/ --style_layer 5 --mitigate_style_bias --not_flip_style --use_idloss

Bird→Car (translating 4 classes of birds to 4 classes of cars)

python train.py --task bird2car --source_paths ./data/ImageNet291/train/10_bird/ ./data/ImageNet291/train/11_bird/ ./data/ImageNet291/train/12_bird/ ./data/ImageNet291/train/13_bird/ --source_num 600 600 600 600 --target_paths ./data/ImageNet291/train/436_vehicle/ ./data/ImageNet291/train/511_vehicle/ ./data/ImageNet291/train/627_vehicle/ ./data/ImageNet291/train/656_vehicle/ --target_num 600 600 600 600

Train Content Encoder of Prior Distillation

We provide our pretrained model content_encoder.pt at Google Drive or Baidu Cloud (access code: cvpr). This model is obtained by:

python prior_distillation.py --unpaired_data_root ./data/ImageNet291/train/ --paired_data_root ./data/synImageNet291/train/ --unpaired_mask_root ./data/ImageNet291_mask/train/ --paired_mask_root ./data/synImageNet291_mask/train/

The training requires ImageNet291 and synImageNet291 datasets. Please refer to data preparation.


Results

Male-to-Female: close domains

male2female

Cat-to-Dog: related domains

cat2dog

Dog-to-Human and Bird-to-Dog: distant domains

dog2human

bird2dog

Bird-to-Car: extremely distant domains for stress testing

bird2car

Citation

If you find this work useful for your research, please consider citing our paper:

@inproceedings{yang2022Unsupervised,
  title={Unsupervised Image-to-Image Translation with Generative Prior},
  author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change},
  booktitle={CVPR},
  year={2022}
}

Acknowledgments

The code is developed based on StarGAN v2, SPADE and Imaginaire.

Owner
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
Pytorch0.4.1 codes for InsightFace

InsightFace_Pytorch Pytorch0.4.1 codes for InsightFace 1. Intro This repo is a reimplementation of Arcface(paper), or Insightface(github) For models,

1.5k Jan 01, 2023
Pytorch implementation of the DeepDream computer vision algorithm

deep-dream-in-pytorch Pytorch (https://github.com/pytorch/pytorch) implementation of the deep dream (https://en.wikipedia.org/wiki/DeepDream) computer

102 Dec 05, 2022
A framework for Quantification written in Python

QuaPy QuaPy is an open source framework for quantification (a.k.a. supervised prevalence estimation, or learning to quantify) written in Python. QuaPy

41 Dec 14, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

All course materials for the Zero to Mastery Deep Learning with TensorFlow course.

Daniel Bourke 3.4k Jan 07, 2023
Code for the paper: Sketch Your Own GAN

Sketch Your Own GAN Project | Paper | Youtube Our method takes in one or a few hand-drawn sketches and customizes an off-the-shelf GAN to match the in

677 Dec 28, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
A unified 3D Transformer Pipeline for visual synthesis

Overview This is the official repo for the paper: NÜWA: Visual Synthesis Pre-training for Neural visUal World creAtion. NÜWA is a unified multimodal p

Microsoft 2.6k Jan 06, 2023
Calling Julia from Python - an experiment on data loading

Calling Julia from Python - an experiment on data loading See the slides. TLDR After reading Patrick's blog post, we decided to try to replace C++ wit

Abel Siqueira 8 Jun 07, 2022
Fiddle is a Python-first configuration library particularly well suited to ML applications.

Fiddle Fiddle is a Python-first configuration library particularly well suited to ML applications. Fiddle enables deep configurability of parameters i

Google 227 Dec 26, 2022
This project is the official implementation of our accepted ICLR 2021 paper BiPointNet: Binary Neural Network for Point Clouds.

BiPointNet: Binary Neural Network for Point Clouds Created by Haotong Qin, Zhongang Cai, Mingyuan Zhang, Yifu Ding, Haiyu Zhao, Shuai Yi, Xianglong Li

Haotong Qin 59 Dec 17, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022