The official repository for our paper "The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers". We significantly improve the systematic generalization of transformer models on a variety of datasets using simple tricks and careful considerations.

Overview

Codebase for training transformers on systematic generalization datasets.

The official repository for our EMNLP 2021 paper The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers.

Setup

This project requires Python 3 (tested with Python 3.8 and 3.9) and PyTorch 1.8.

pip3 install -r requirements.txt

Create a Weights and Biases account and run

wandb login

More information on setting up Weights and Biases can be found on https://docs.wandb.com/quickstart.

For plotting, LaTeX is required (to avoid Type 3 fonts and to render symbols). Installation is OS specific.

Downloading data

All datasets are downloaded automatically except the Mathematics Dataset and CFQ which is hosted in Google Cloud and one has to log in with his/her Google account to be able to access it.

Math dataset

Download the .tar.gz file manually from here:

https://console.cloud.google.com/storage/browser/mathematics-dataset?pli=1

Copy it to the cache/dm_math/ folder. You should have a cache/dm_math/mathematics_dataset-v1.0.tar.gz file in the project folder if you did everyhing correctly.

CFQ

Download the .tar.gz file manually from here:

https://storage.cloud.google.com/cfq_dataset/cfq1.1.tar.gz

Copy it to the cache/CFQ/ folder. You should have a cache/CFQ/cfq1.1.tar.gz file in the project folder if you did everyhing correctly.

Usage

Running the experiments from the paper on a cluster

The code makes use of Weights and Biases for experiment tracking. In the sweeps directory, we provide sweep configurations for all experiments we have performed. The sweeps are officially meant for hyperparameter optimization, but we use them to run multiple configurations and seeds.

To reproduce our results, start a sweep for each of the YAML files in the sweeps directory. Run wandb agent for each of them in the root directory of the project. This will run all the experiments, and they will be displayed on the W&B dashboard. The name of the sweeps must match the name of the files in sweeps directory, except the .yaml ending. More details on how to run W&B sweeps can be found at https://docs.wandb.com/sweeps/quickstart.

For example, if you want to run Math Dataset experiments, run wandb sweep --name dm_math sweeps/dm_math.yaml. This creates the sweep and prints out its ID. Then run wandb agent <ID> with that ID.

Re-creating plots from the paper

Edit config file paper/config.json. Enter your project name in the field "wandb_project" (e.g. "username/project").

Run the scripts in the paper directory. For example:

cd paper
./run_all.sh

The output will be generated in the paper/out/ directory. Tables will be printed to stdout in latex format.

If you want to reproduce individual plots, it can be done by running individial python files in the paper directory.

Running experiments locally

It is possible to run single experiments with Tensorboard without using Weights and Biases. This is intended to be used for debugging the code locally.

If you want to run experiments locally, you can use run.py:

./run.py sweeps/tuple_rnn.yaml

If the sweep in question has multiple parameter choices, run.py will interactively prompt choices of each of them.

The experiment also starts a Tensorboard instance automatically on port 7000. If the port is already occupied, it will incrementally search for the next free port.

Note that the plotting scripts work only with Weights and Biases.

Reducing memory usage

In case some tasks won't fit on your GPU, play around with "-max_length_per_batch " argument. It can trade off memory usage/speed by slicing batches and executing them in multiple passes. Reduce it until the model fits.

BibTex

@inproceedings{csordas2021devil,
      title={The Devil is in the Detail: Simple Tricks Improve Systematic Generalization of Transformers}, 
      author={R\'obert Csord\'as and Kazuki Irie and J\"urgen Schmidhuber},
      booktitle={Proc. Conf. on Empirical Methods in Natural Language Processing (EMNLP)},
      year={2021},
      month={November},
      address={Punta Cana, Dominican Republic}
}
Owner
Csordás Róbert
Csordás Róbert
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN

StyleGAN of All Trades: Image Manipulation withOnly Pretrained StyleGAN This is the PyTorch implementation of StyleGAN of All Trades: Image Manipulati

360 Dec 28, 2022
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
Official repository for the paper "Instance-Conditioned GAN"

Official repository for the paper "Instance-Conditioned GAN" by Arantxa Casanova, Marlene Careil, Jakob Verbeek, Michał Drożdżal, Adriana Romero-Soriano.

Facebook Research 510 Dec 30, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
Python framework for Stochastic Differential Equations modeling

SDElearn: a Python package for SDE modeling This package implements functionalities for working with Stochastic Differential Equations models (SDEs fo

4 May 10, 2022
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
Monk is a low code Deep Learning tool and a unified wrapper for Computer Vision.

Monk - A computer vision toolkit for everyone Why use Monk Issue: Want to begin learning computer vision Solution: Start with Monk's hands-on study ro

Tessellate Imaging 507 Dec 04, 2022
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search

CAPITAL: Optimal Subgroup Identification via Constrained Policy Tree Search This repository is the official implementation of CAPITAL: Optimal Subgrou

Hengrui Cai 0 Oct 19, 2021
VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning

VisualGPT Our Paper VisualGPT: Data-efficient Adaptation of Pretrained Language Models for Image Captioning Main Architecture of Our VisualGPT Downloa

Vision CAIR Research Group, KAUST 140 Dec 28, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Code for Blind Image Decomposition (BID) and Blind Image Decomposition network (BIDeN).

arXiv, porject page, paper Blind Image Decomposition (BID) Blind Image Decomposition is a novel task. The task requires separating a superimposed imag

64 Dec 20, 2022
A public available dataset for road boundary detection in aerial images

Topo-boundary This is the official github repo of paper Topo-boundary: A Benchmark Dataset on Topological Road-boundary Detection Using Aerial Images

Zhenhua Xu 79 Jan 04, 2023
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Language-Agnostic Website Embedding and Classification

Homepage2Vec Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf Homepage2Vec is a pre-

25 Dec 27, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022