Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Overview

Ravens - Transporter Networks

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks, each with (i) a scripted oracle that provides expert demonstrations (for imitation learning), and (ii) reward functions that provide partial credit (for reinforcement learning).


(a) block-insertion: pick up the L-shaped red block and place it into the L-shaped fixture.
(b) place-red-in-green: pick up the red blocks and place them into the green bowls amidst other objects.
(c) towers-of-hanoi: sequentially move disks from one tower to another—only smaller disks can be on top of larger ones.
(d) align-box-corner: pick up the randomly sized box and align one of its corners to the L-shaped marker on the tabletop.
(e) stack-block-pyramid: sequentially stack 6 blocks into a pyramid of 3-2-1 with rainbow colored ordering.
(f) palletizing-boxes: pick up homogeneous fixed-sized boxes and stack them in transposed layers on the pallet.
(g) assembling-kits: pick up different objects and arrange them on a board marked with corresponding silhouettes.
(h) packing-boxes: pick up randomly sized boxes and place them tightly into a container.
(i) manipulating-rope: rearrange a deformable rope such that it connects the two endpoints of a 3-sided square.
(j) sweeping-piles: push piles of small objects into a target goal zone marked on the tabletop.

Some tasks require generalizing to unseen objects (d,g,h), or multi-step sequencing with closed-loop feedback (c,e,f,h,i,j).

Team: this repository is developed and maintained by Andy Zeng, Pete Florence, Daniel Seita, Jonathan Tompson, and Ayzaan Wahid. This is the reference repository for the paper:

Transporter Networks: Rearranging the Visual World for Robotic Manipulation

Project Website  •  PDF  •  Conference on Robot Learning (CoRL) 2020

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian, Travis Armstrong,
Ivan Krasin, Dan Duong, Vikas Sindhwani, Johnny Lee

Abstract. Robotic manipulation can be formulated as inducing a sequence of spatial displacements: where the space being moved can encompass an object, part of an object, or end effector. In this work, we propose the Transporter Network, a simple model architecture that rearranges deep features to infer spatial displacements from visual input—which can parameterize robot actions. It makes no assumptions of objectness (e.g. canonical poses, models, or keypoints), it exploits spatial symmetries, and is orders of magnitude more sample efficient than our benchmarked alternatives in learning vision-based manipulation tasks: from stacking a pyramid of blocks, to assembling kits with unseen objects; from manipulating deformable ropes, to pushing piles of small objects with closed-loop feedback. Our method can represent complex multi-modal policy distributions and generalizes to multi-step sequential tasks, as well as 6DoF pick-and-place. Experiments on 10 simulated tasks show that it learns faster and generalizes better than a variety of end-to-end baselines, including policies that use ground-truth object poses. We validate our methods with hardware in the real world.

Installation

Step 1. Recommended: install Miniconda with Python 3.7.

curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh -b -u
echo $'\nexport PATH=~/miniconda3/bin:"${PATH}"\n' >> ~/.profile  # Add Conda to PATH.
source ~/.profile
conda init

Step 2. Create and activate Conda environment, then install GCC and Python packages.

cd ~/ravens
conda create --name ravens python=3.7 -y
conda activate ravens
sudo apt-get update
sudo apt-get -y install gcc libgl1-mesa-dev
pip install -r requirements.txt
python setup.py install --user

Step 3. Recommended: install GPU acceleration with NVIDIA CUDA 10.1 and cuDNN 7.6.5 for Tensorflow.

./oss_scipts/install_cuda.sh  #  For Ubuntu 16.04 and 18.04.
conda install cudatoolkit==10.1.243 -y
conda install cudnn==7.6.5 -y

Alternative: Pure pip

As an example for Ubuntu 18.04:

./oss_scipts/install_cuda.sh  #  For Ubuntu 16.04 and 18.04.
sudo apt install gcc libgl1-mesa-dev python3.8-venv
python3.8 -m venv ./venv
source ./venv/bin/activate
pip install -U pip
pip install scikit-build
pip install -r ./requirements.txt
export PYTHONPATH=${PWD}

Getting Started

Step 1. Generate training and testing data (saved locally). Note: remove --disp for headless mode.

python ravens/demos.py --assets_root=./ravens/environments/assets/ --disp=True --task=block-insertion --mode=train --n=10
python ravens/demos.py --assets_root=./ravens/environments/assets/ --disp=True --task=block-insertion --mode=test --n=100

To run with shared memory, open a separate terminal window and run python3 -m pybullet_utils.runServer. Then add --shared_memory flag to the command above.

Step 2. Train a model e.g., Transporter Networks model. Model checkpoints are saved to the checkpoints directory. Optional: you may exit training prematurely after 1000 iterations to skip to the next step.

python ravens/train.py --task=block-insertion --agent=transporter --n_demos=10

Step 3. Evaluate a Transporter Networks agent using the model trained for 1000 iterations. Results are saved locally into .pkl files.

python ravens/test.py --assets_root=./ravens/environments/assets/ --disp=True --task=block-insertion --agent=transporter --n_demos=10 --n_steps=1000

Step 4. Plot and print results.

python ravens/plot.py --disp=True --task=block-insertion --agent=transporter --n_demos=10

Optional. Track training and validation losses with Tensorboard.

python -m tensorboard.main --logdir=logs  # Open the browser to where it tells you to.

Datasets and Pre-Trained Models

Download our generated train and test datasets and pre-trained models.

wget https://storage.googleapis.com/ravens-assets/checkpoints.zip
wget https://storage.googleapis.com/ravens-assets/block-insertion.zip
wget https://storage.googleapis.com/ravens-assets/place-red-in-green.zip
wget https://storage.googleapis.com/ravens-assets/towers-of-hanoi.zip
wget https://storage.googleapis.com/ravens-assets/align-box-corner.zip
wget https://storage.googleapis.com/ravens-assets/stack-block-pyramid.zip
wget https://storage.googleapis.com/ravens-assets/palletizing-boxes.zip
wget https://storage.googleapis.com/ravens-assets/assembling-kits.zip
wget https://storage.googleapis.com/ravens-assets/packing-boxes.zip
wget https://storage.googleapis.com/ravens-assets/manipulating-rope.zip
wget https://storage.googleapis.com/ravens-assets/sweeping-piles.zip

The MDP formulation for each task uses transitions with the following structure:

Observations: raw RGB-D images and camera parameters (pose and intrinsics).

Actions: a primitive function (to be called by the robot) and parameters.

Rewards: total sum of rewards for a successful episode should be =1.

Info: 6D poses, sizes, and colors of objects.

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021

In this repo we reproduce and extend results of Learning in High Dimension Always Amounts to Extrapolation by Balestriero et al. 2021. Balestriero et

Sean M. Hendryx 1 Jan 27, 2022
Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

Code for EmBERT, a transformer model for embodied, language-guided visual task completion.

41 Jan 03, 2023
Official code for "Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021".

Simpler is Better: Few-shot Semantic Segmentation with Classifier Weight Transformer. ICCV2021. Introduction We proposed a novel model training paradi

Lucas 103 Dec 14, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Use of Attention Gates in a Convolutional Neural Network / Medical Image Classification and Segmentation

Attention Gated Networks (Image Classification & Segmentation) Pytorch implementation of attention gates used in U-Net and VGG-16 models. The framewor

Ozan Oktay 1.6k Dec 30, 2022
A large-scale benchmark for co-optimizing the design and control of soft robots, as seen in NeurIPS 2021.

Evolution Gym A large-scale benchmark for co-optimizing the design and control of soft robots. As seen in Evolution Gym: A Large-Scale Benchmark for E

121 Dec 14, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
Gradient representations in ReLU networks as similarity functions

Gradient representations in ReLU networks as similarity functions by Dániel Rácz and Bálint Daróczy. This repo contains the python code related to our

1 Oct 08, 2021
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Space robot - (Course Project) Using the space robot to capture the target satellite that is disabled and spinning, then stabilize and fix it up

Mingrui Yu 3 Jan 07, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
code for paper -- "Seamless Satellite-image Synthesis"

Seamless Satellite-image Synthesis by Jialin Zhu and Tom Kelly. Project site. The code of our models borrows heavily from the BicycleGAN repository an

Light 14 Apr 05, 2022
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022