(ICCV'21) Official PyTorch implementation of Relational Embedding for Few-Shot Classification

Overview

Relational Embedding for Few-Shot Classification (ICCV 2021)

teaser

We propose to address the problem of few-shot classification by meta-learning “what to observe” and “where to attend” in a relational perspective. Our method leverages relational patterns within and between images via self-correlational representation (SCR) and cross-correlational attention (CCA). Within each image, the SCR module transforms a base feature map into a self-correlation tensor and learns to extract structural patterns from the tensor. Between the images, the CCA module computes cross-correlation between two image representations and learns to produce co-attention between them. (a), (b), and (c) visualize the activation maps of base features, self-correlational representation, and cross-correlational attention, respectively. Our Relational Embedding Network (RENet) combines the two relational modules to learn relational embedding in an end-to-end manner. In experimental evaluation, it achieves consistent improvements over state-of-the-art methods on four widely used few-shot classification benchmarks of miniImageNet, tieredImageNet, CUB-200-2011, and CIFAR-FS.

✔️ Requirements

⚙️ Conda environmnet installation

conda env create --name renet_iccv21 --file environment.yml
conda activate renet_iccv21

📚 Datasets

cd datasets
bash download_miniimagenet.sh
bash download_cub.sh
bash download_cifar_fs.sh
bash download_tieredimagenet.sh

🌳 Authors' checkpoints

cd checkpoints
bash download_checkpoints_renet.sh

The file structure should be as follows:

renet/
├── datasets/
├── model/
├── scripts/
├── checkpoints/
│   ├── cifar_fs/
│   ├── cub/
│   ├── miniimagenet/
│   └── tieredimagenet/
train.py
test.py
README.md
environment.yml

📌 Quick start: testing scripts

To test in the 5-way K-shot setting:

bash scripts/test/{dataset_name}_5wKs.sh

For example, to test ReNet on the miniImagenet dataset in the 5-way 1-shot setting:

bash scripts/test/miniimagenet_5w1s.sh

🔥 Training scripts

To train in the 5-way K-shot setting:

bash scripts/train/{dataset_name}_5wKs.sh

For example, to train ReNet on the CUB dataset in the 5-way 1-shot setting:

bash scripts/train/cub_5w1s.sh

Training & testing a 5-way 1-shot model on the CUB dataset using a TitanRTX 3090 GPU takes 41m 30s.

🎨 Few-shot classification results

Experimental results on few-shot classification datasets with ResNet-12 backbone. We report average results with 2,000 randomly sampled episodes.

datasets miniImageNet tieredImageNet
setups 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
accuracy 67.60 82.58 71.61 85.28
datasets CUB-200-2011 CIFAR-FS
setups 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
accuracy 79.49 91.11 74.51 86.60

🔍 Related repos

Our project references the codes in the following repos:

💌 Acknowledgement

We adopted the main code bases from DeepEMD, and we really appreciate it 😃 . We also sincerely thank all the ICCV reviewers, especially R#2, for valuable suggestions.

📜 Citing RENet

If you find our code or paper useful to your research work, please consider citing our work using the following bibtex:

@inproceedings{kang2021renet,
    author   = {Kang, Dahyun and Kwon, Heeseung and Min, Juhong and Cho, Minsu},
    title    = {Relational Embedding for Few-Shot Classification},
    booktitle= {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    year     = {2021}
}
Owner
Dahyun Kang
Dahyun Kang
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

106 Dec 28, 2022
Java and SHACL code commented in the paper "Towards compliance checking in reified I/O logic via SHACL" submitted to ICAIL 2021

shRIOL The subfolder shRIOL contains Java files to execute the SHACL files on the OWL ontology. To compile the Java files: "javac -cp ./src/;./lib/* -

1 Dec 06, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN - Official PyTorch Implementation ***** New: StarGAN v2 is available at https://github.com/clovaai/stargan-v2 ***** This repository provides t

Yunjey Choi 5.1k Jan 04, 2023
Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures.

NLP_0-project Group project for MFIN7036. Our goal is to predict firm profitability with text-based competition measures1. We are a "democratic" and c

3 Mar 16, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP

Wav2CLIP 🚧 WIP 🚧 Official implementation of the paper WAV2CLIP: LEARNING ROBUST AUDIO REPRESENTATIONS FROM CLIP 📄 🔗 Ho-Hsiang Wu, Prem Seetharaman

Descript 240 Dec 13, 2022
NIMA: Neural IMage Assessment

PyTorch NIMA: Neural IMage Assessment PyTorch implementation of Neural IMage Assessment by Hossein Talebi and Peyman Milanfar. You can learn more from

Kyryl Truskovskyi 293 Dec 30, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
League of Legends Reinforcement Learning Environment (LoLRLE) multiple training scenarios using PPO.

League of Legends Reinforcement Learning Environment (LoLRLE) About This repo contains code to train an agent to play league of legends in a distribut

2 Aug 19, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

A curated list of awesome papers for Semantic Retrieval (TOIS Accepted: Semantic Models for the First-stage Retrieval: A Comprehensive Review).

Yinqiong Cai 189 Dec 28, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023