TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

Related tags

Deep LearningTAP
Overview

TAP: Text-Aware Pre-training

TAP: Text-Aware Pre-training for Text-VQA and Text-Caption

by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Florencio, Lijuan Wang, Cha Zhang, Lei Zhang, and Jiebo Luo

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2021, Oral

Introduction

We propose Text-Aware Pre-training (TAP) for Text-VQA and Text-Caption tasks. For more details, please refer to our paper.

Citation

@inproceedings{yang2021tap,
  title={TAP: Text-Aware Pre-training for Text-VQA and Text-Caption},
  author={Yang, Zhengyuan and Lu, Yijuan and Wang, Jianfeng and Yin, Xi and Florencio, Dinei and Wang, Lijuan and Zhang, Cha and Zhang, Lei and Luo, Jiebo},
  booktitle={CVPR},
  year={2021}
}

Prerequisites

  • Python 3.6

  • Pytorch 1.4.0

  • Please refer to requirements.txt. Or using

    python setup.py develop
    

Installation

  1. Clone the repository

    git clone https://github.com/microsoft/TAP.git
    cd TAP
    python setup.py develop
    
  2. Data

  • Please refer to the Readme in the data folder.

Training

  1. Train the model, run the code under main folder. Using flag --pretrain to access the pre-training mode, otherwise the main QA/Captioning losses are used to optimize the model. Example yml files are in configs folder. Detailed configs are in released models.

    Pre-training:

    python -m torch.distributed.launch --nproc_per_node $num_gpu tools/run.py --pretrain --tasks vqa --datasets $dataset --model $model --seed $seed --config configs/vqa/$dataset/"$pretrain_yml".yml --save_dir save/$pretrain_savedir training_parameters.distributed True
    
    # for example
    python -m torch.distributed.launch --nproc_per_node 4 tools/run.py --pretrain --tasks vqa --datasets m4c_textvqa --model m4c_split --seed 13 --config configs/vqa/m4c_textvqa/tap_base_pretrain.yml --save_dir save/m4c_split_pretrain_test training_parameters.distributed True
    

    Fine-tuning:

    python -m torch.distributed.launch --nproc_per_node $num_gpu tools/run.py --tasks vqa --datasets $dataset --model $model --seed $seed --config configs/vqa/$dataset/"$refine_yml".yml --save_dir save/$refine_savedir --resume_file save/$pretrain_savedir/$savename/best.ckpt training_parameters.distributed True
    
    # for example
    python -m torch.distributed.launch --nproc_per_node 4 tools/run.py --tasks vqa --datasets m4c_textvqa --model m4c_split --seed 13 --config configs/vqa/m4c_textvqa/tap_refine.yml --save_dir save/m4c_split_refine_test --resume_file save/pretrained/textvqa_tap_base_pretrain.ckpt training_parameters.distributed True
    
  2. Evaluate the model, run the code under main folder. Set up val or test set by --run_type.

    python -m torch.distributed.launch --nproc_per_node $num_gpu tools/run.py --tasks vqa --datasets $dataset --model $model --config configs/vqa/$dataset/"$refine_yml".yml --save_dir save/$refine_savedir --run_type val --resume_file save/$refine_savedir/$savename/best.ckpt training_parameters.distributed True
    
    # for example
    python -m torch.distributed.launch --nproc_per_node 4 tools/run.py --tasks vqa --datasets m4c_textvqa --model m4c_split --config configs/vqa/m4c_textvqa/tap_refine.yml --save_dir save/m4c_split_refine_test --run_type val --resume_file save/finetuned/textvqa_tap_base_best.ckpt training_parameters.distributed True
    
  3. Captioning evaluation.

    python projects/M4C_Captioner/scripts/textcaps_eval.py --set val --pred_file YOUR_VAL_PREDICTION_FILE
    

Performance and Pre-trained Models

Please check the detailed experiment settings in our paper.

Model checkpoints (~17G).

path/to/azcopy copy https://tapvqacaption.blob.core.windows.net/data/save <local_path>/save --recursive

Please refer to the Readme in the data folder for the detailed instructions on azcopy downloading.

Text-VQA TAP TAP** (with extra data)
TextVQA 49.91 54.71
STVQA 45.29 50.83
Text-Captioning TAP TAP** (with extra data)
TextCaps 105.05 109.16

Credits

The project is built based on the following repository:

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Mail classification with tensorflow and MS Exchange Server (ham or spam).

Mail classification with tensorflow and MS Exchange Server (ham or spam).

Metin Karatas 1 Sep 11, 2021
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive losses

Self-supervised learning Self-supervised learning algorithms provide a way to train Deep Neural Networks in an unsupervised way using contrastive loss

Arijit Das 2 Mar 26, 2022
Some useful blender add-ons for SMPL skeleton's poses and global translation.

Blender add-ons for SMPL skeleton's poses and trans There are two blender add-ons for SMPL skeleton's poses and trans.The first is for making an offli

犹在镜中 154 Jan 04, 2023
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Open-sourcing the Slates Dataset for recommender systems research

FINN.no Recommender Systems Slate Dataset This repository accompany the paper "Dynamic Slate Recommendation with Gated Recurrent Units and Thompson Sa

FINN.no 48 Nov 28, 2022
Code for "On the Effects of Batch and Weight Normalization in Generative Adversarial Networks"

Note: this repo has been discontinued, please check code for newer version of the paper here Weight Normalized GAN Code for the paper "On the Effects

Sitao Xiang 182 Sep 06, 2021
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
QHack—the quantum machine learning hackathon

Official repo for QHack—the quantum machine learning hackathon

Xanadu 72 Dec 21, 2022
Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology Self-Supervised Vision Transformers Learn Visual Concepts in Histopatholog

Richard Chen 95 Dec 24, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
ReGAN: Sequence GAN using RE[INFORCE|LAX|BAR] based PG estimators

Sequence Generation with GANs trained by Gradient Estimation Requirements: PyTorch v0.3 Python 3.6 CUDA 9.1 (For GPU) Origin The idea is from paper Se

40 Nov 03, 2022