Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology (LMRL Workshop, NeurIPS 2021)

Overview

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology

Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology, LMRL Workshop, NeurIPS 2021. [Workshop] [arXiv]
Richard. J. Chen, Rahul G. Krishnan
@article{chen2022self,
  title={Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology},
  author={Chen, Richard J and Krishnan, Rahul G},
  journal={Learning Meaningful Representations of Life, NeurIPS 2021},
  year={2021}
}
DINO illustration

Summary / Main Findings:

  1. In head-to-head comparison of SimCLR versus DINO, DINO learns more effective pretrained representations for histopathology - likely due to 1) not needing negative samples (histopathology has lots of potential class imbalance), 2) capturing better inductive biases about the part-whole hierarchies of how cells are spatially organized in tissue.
  2. ImageNet features do lag behind SSL methods (in terms of data-efficiency), but are better than you think on patch/slide-level tasks. Transfer learning with ImageNet features (from a truncated ResNet-50 after 3rd residual block) gives very decent performance using the CLAM package.
  3. SSL may help mitigate domain shift from site-specific H&E stainining protocols. With vanilla data augmentations, global structure of morphological subtypes (within each class) are more well-preserved than ImageNet features via 2D UMAP scatter plots.
  4. Self-supervised ViTs are able to localize cell location quite well w/o any supervision. Our results show that ViTs are able to localize visual concepts in histopathology in introspecting the attention heads.

Updates

Stay tuned for more updates :).

  • TBA: Pretrained SimCLR and DINO models on TCGA-Lung (Larger working paper, in submission).
  • TBA: Pretrained SimCLR and DINO models on TCGA-PanCancer (Larger working paper, in submission).
  • TBA: PEP8-compliance (cleaning and organizing code).
  • 03/04/2022: Reproducible and largely-working codebase that I'm satisfied with and have heavily tested.

Pre-Reqs

We use Git LFS to version-control large files in this repository (e.g. - images, embeddings, checkpoints). After installing, to pull these large files, please run:

git lfs pull

Pretrained Models

SIMCLR and DINO models were trained for 100 epochs using their vanilla training recipes in their respective papers. These models were developed on 2,055,742 patches (256 x 256 resolution at 20X magnification) extracted from diagnostic slides in the TCGA-BRCA dataset, and evaluated via K-NN on patch-level datasets in histopathology.

Note: Results should be taken-in w.r.t. to the size of dataset and duraration of training epochs. Ideally, longer training with larger batch sizes would demonstrate larger gains in SSL performance.

Arch SSL Method Dataset Epochs Dim K-NN Download
ResNet-50 Transfer ImageNet N/A 1024 0.935 N/A
ResNet-50 SimCLR TCGA-BRCA 100 2048 0.938 Backbone
ViT-S/16 DINO TCGA-BRCA 100 384 0.941 Backbone

Data Download + Data Preprocessing

For CRC-100K and BreastPathQ, pre-extracted embeddings are already available and processed in ./embeddings_patch_library. See patch_extraction_utils.py on how these patch datasets were processed.

Additional Datasets + Custom Implementation: This codebase is flexible for feature extraction on a variety of different patch datasets. To extend this work, simply modify patch_extraction_utils.py with a custom Dataset Loader for your dataset. As an example, we include BCSS (results not yet updated in this work).

  • BCSS (v1): You can download the BCSS dataset from the official Grand Challenge link. For this dataset, we manually developed the train and test dataset splits and labels using majority-voting. Reproducibility for the raw BCSS dataset may be not exact, but we include the pre-extracted embeddings of this dataset in ./embeddings_patch_library (denoted as version 1).

Evaluation: K-NN Patch-Level Classification on CRC-100K + BreastPathQ

Run the notebook patch_extraction.ipynb, followed by patch_evaluation.ipynb. The evaluation notebook should run "out-of-the-box" with Git LFS.

table2

Evaluation: Slide-Level Classification on TCGA-BRCA (IDC versus ILC)

Install the CLAM Package, followed by using the 10-fold cross-validation splits made available in ./slide_evaluation/10foldcv_subtype/tcga_brca. Tensorboard train + validation logs can visualized via:

tensorboard --logdir ./slide_evaluation/results/
table1

Visualization: Creating UMAPs

Install umap-learn (can be tricky to install if you have incompatible dependencies), followed by using the following code snippet in patch_extraction_utils.py, and is used in patch_extraction.ipynb to create Figure 4.

UMAP

Visualization: Attention Maps

Attention visualizations (reproducing Figure 3) can be performed via walking through the following notebook at attention_visualization_256.ipynb.

Attention Visualization

Issues

  • Please open new threads or report issues directly (for urgent blockers) to [email protected].
  • Immediate response to minor issues may not be available.

Acknowledgements, License & Usage

  • Part of this work was performed while at Microsoft Research. We thank the BioML group at Microsoft Research New England for their insightful feedback.
  • This work is still under submission in a formal proceeding. Still, if you found our work useful in your research, please consider citing our paper at:
@article{chen2022self,
  title={Self-Supervised Vision Transformers Learn Visual Concepts in Histopathology},
  author={Chen, Richard J and Krishnan, Rahul G},
  journal={Learning Meaningful Representations of Life, NeurIPS 2021},
  year={2021}
}

© This code is made available under the GPLv3 License and is available for non-commercial academic purposes.

Owner
Richard Chen
Ph.D. Candidate at Harvard
Richard Chen
A production-ready, scalable Indexer for the Jina neural search framework, based on HNSW and PSQL

🌟 HNSW + PostgreSQL Indexer HNSWPostgreSQLIndexer Jina is a production-ready, scalable Indexer for the Jina neural search framework. It combines the

Jina AI 25 Oct 14, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

[CVPR 2021] Generative Hierarchical Features from Synthesizing Images

GenForce: May Generative Force Be with You 148 Dec 09, 2022
SatelliteSfM - A library for solving the satellite structure from motion problem

Satellite Structure from Motion Maintained by Kai Zhang. Overview This is a libr

Kai Zhang 190 Dec 08, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
FLSim a flexible, standalone library written in PyTorch that simulates FL settings with a minimal, easy-to-use API

Federated Learning Simulator (FLSim) is a flexible, standalone core library that simulates FL settings with a minimal, easy-to-use API. FLSim is domain-agnostic and accommodates many use cases such a

Meta Research 162 Jan 02, 2023
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Unofficial Tensorflow Implementation of ConvNeXt from A ConvNet for the 2020s

Tensorflow Implementation of "A ConvNet for the 2020s" This is the unofficial Tensorflow Implementation of ConvNeXt from "A ConvNet for the 2020s" pap

DK 11 Oct 12, 2022
MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation

MHFormer: Multi-Hypothesis Transformer for 3D Human Pose Estimation This repo is the official implementation of "MHFormer: Multi-Hypothesis Transforme

Vegetabird 281 Jan 07, 2023
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
For IBM Quantum Challenge Africa 2021, 9 September (07:00 UTC) - 20 September (23:00 UTC).

IBM Quantum Challenge Africa 2021 To ensure Africa is able to apply quantum computing to solve problems relevant to the continent, the IBM Research La

Qiskit Community 48 Dec 25, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022