Code for Understanding Pooling in Graph Neural Networks

Related tags

Deep LearningSRC
Overview

Select, Reduce, Connect

This repository contains the code used for the experiments of:

"Understanding Pooling in Graph Neural Networks"

Setup

Install TensorFlow and other dependencies:

pip install -r requirements.txt

Running experiments

Experiments are found in the following folders:

  • autoencoder/
  • spectral_similarity/
  • graph_classification/

Each folder has a bash script called run_all.sh that will reproduce the results reported in the paper.

To generate the plots and tables that we included in the paper, you can use the plots.py, plots_datasets.py, or tables.py found in the folders.

To run experiments for an individual pooling operator, you can use the run_[OPERATOR NAME].py scripts in each folder.

The pooling operators that we used for the experiments are found in layers/ (trainable) and modules/ (non-trainable). The GNN architectures used in the experiments are found in models/.

The SRCPool class

The core of this repository is the SRCPool class that implements a general interface to create SRC pooling layers with the Keras API.

Our implementation of MinCutPool, DiffPool, LaPool, Top-K, and SAGPool using the SRCPool class can be found in src/layers.

In general, SRC layers compute:

Where is a node equivariant selection function that computes the supernode assignments , is a permutation-invariant function to reduce the supernodes into the new node attributes, and is a permutation-invariant connection function that computes the links between the pooled nodes.

By extending this class, it is possible to create any pooling layer in the SRC framework.

Input

  • X: Tensor of shape ([batch], N, F) representing node features;
  • A: Tensor or SparseTensor of shape ([batch], N, N) representing the adjacency matrix;
  • I: (optional) Tensor of integers with shape (N, ) representing the batch index;

Output

  • X_pool: Tensor of shape ([batch], K, F), representing the node features of the output. K is the number of output nodes and depends on the specific pooling strategy;
  • A_pool: Tensor or SparseTensor of shape ([batch], K, K) representing the adjacency matrix of the output;
  • I_pool: (only if I was given as input) Tensor of integers with shape (K, ) representing the batch index of the output;
  • S_pool: (if return_sel=True) Tensor or SparseTensor representing the supernode assignments;

API

  • pool(X, A, I, **kwargs): pools the graph and returns the reduced node features and adjacency matrix. If the batch index I is not None, a reduced version of I will be returned as well. Any given kwargs will be passed as keyword arguments to select(), reduce() and connect() if any matching key is found. The mandatory arguments of pool() (X, A, and I) must be computed in call() by calling self.get_inputs(inputs).
  • select(X, A, I, **kwargs): computes supernode assignments mapping the nodes of the input graph to the nodes of the output.
  • reduce(X, S, **kwargs): reduces the supernodes to form the nodes of the pooled graph.
  • connect(A, S, **kwargs): connects the reduced supernodes.
  • reduce_index(I, S, **kwargs): helper function to reduce the batch index (only called if I is given as input).

When overriding any function of the API, it is possible to access the true number of nodes of the input (N) as a Tensor in the instance variable self.N (this is populated by self.get_inputs() at the beginning of call()).

Arguments:

  • return_sel: if True, the Tensor used to represent supernode assignments will be returned with X_pool, A_pool, and I_pool;
Owner
Daniele Grattarola
PhD student @ Università della Svizzera italiana
Daniele Grattarola
Turning pixels into virtual points for multimodal 3D object detection.

Multimodal Virtual Point 3D Detection Turning pixels into virtual points for multimodal 3D object detection. Multimodal Virtual Point 3D Detection, Ti

Tianwei Yin 204 Jan 08, 2023
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021
An example of time series augmentation methods with Keras

Time Series Augmentation This is a collection of time series data augmentation methods and an example use using Keras. News 2020/04/16: Repository Cre

九州大学 ヒューマンインタフェース研究室 229 Jan 02, 2023
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Just Randoms Cats with python

Random-Cat Just Randoms Cats with python.

OriCode 2 Dec 21, 2021
An interpreter for RASP as described in the ICML 2021 paper "Thinking Like Transformers"

RASP Setup Mac or Linux Run ./setup.sh . It will create a python3 virtual environment and install the dependencies for RASP. It will also try to insta

141 Jan 03, 2023
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Task-based end-to-end model learning in stochastic optimization

Task-based End-to-end Model Learning in Stochastic Optimization This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains th

CMU Locus Lab 164 Dec 29, 2022
DM-ACME compatible implementation of the Arm26 environment from Mujoco

ACME-compatible implementation of Arm26 from Mujoco This repository contains a customized implementation of Mujoco's Arm26 model, that can be used wit

1 Dec 24, 2021
Source code for NAACL 2021 paper "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference"

TR-BERT Source code and dataset for "TR-BERT: Dynamic Token Reduction for Accelerating BERT Inference". The code is based on huggaface's transformers.

THUNLP 37 Oct 30, 2022
Tooling for the Common Objects In 3D dataset.

CO3D: Common Objects In 3D This repository contains a set of tools for working with the Common Objects in 3D (CO3D) dataset. Download the dataset The

Facebook Research 724 Jan 06, 2023
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Tensorflow implementation of "Learning Deconvolution Network for Semantic Segmentation"

Tensorflow implementation of Learning Deconvolution Network for Semantic Segmentation. Install Instructions Works with tensorflow 1.11.0 and uses the

Fabian Bormann 224 Apr 15, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022