GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

Overview

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions.

Python 3.7.3 PyTorch 1.8.1 Apache-2.0

cxx1 cxx2 msk dy zy

This is the official code release for "Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions".

The code contains a set of encoders that match pre-trained GANs (PGGAN, StyleGANv1, StyleGANv2, BigGAN) via multi-scale vectors with two-scale attentions.

Usage

  • training encoder with center attentions (align image)

python E_align.py

  • training encoder with Gram-based attentions (misalign image)

python E_mis_align.py

  • embedding real images to latent space (using StyleGANv1 and w).

    a. You can put real images at './checkpoint/realimg_file/' (default file as args.img_dir)

    b. You should load pre-trained Encoder at './checkpoint/E/E_blur(case2)_styleganv1_FFHQ_state_dict.pth'

    c. Then run:

python embedding_img.py

  • discovering attribute directions with latent space : embedded_img_processing.py

Note: Pre-trained Model should be download first , and default save to './chechpoint/'

Metric

  • validate performance (Pre-trained GANs and baseline)

    1. using generations.py to generate reconstructed images (generate GANs images if needed)
    2. Files in the directory "./baseline/" could help you to quickly format images and latent vectors (w).
    3. Put comparing images to different files, and run comparing-baseline.py
  • ablation study : look at ''./ablations-study/''

Setup

Encoders

  • Case 1: Training most pre-trained GANs with encoders. at './model/E/E.py' (quickly converge for reconstructed GANs' image)
  • Case 2: Training StyleGANv1 on FFHQ for ablation study and real face image process at './model/E/E_Blur.py' (margin blur and more GPU memory)

Pre-Trained GANs

note: put pre-trained GANs weight file at ''./checkpoint/' directory

  • StyleGAN_V1 (should contain 3 files: Gm, Gs, center-tensor):
    • Cat 256:
      • ./checkpoint/stylegan_V1/cat/cat256_Gs_dict.pth
      • ./checkpoint/stylegan_V1/cat/cat256_Gm_dict.pth
      • ./checkpoint/stylegan_V1/cat/cat256_tensor.pt
    • Car 256: same above
    • Bedroom 256:
  • StyleGAN_V2 (Only one files : pth):
    • FFHQ 1024:
      • ./checkpoint/stylegan_V2/stylegan2_ffhq1024.pth
  • PGGAN ((Only one files : pth)):
    • Horse 256:
      • ./checkpoint/PGGAN/
  • BigGAN (Two files : model as .pt and config as .json ):
    • Image-Net 256:
      • ./checkpoint/biggan/256/G-256.pt
      • ./checkpoint/biggan/256/biggan-deep-256-config.json

Options and Setting

note: different GANs should set different parameters carefully.

  • choose --mtype for StyleGANv1=1, StyleGANv2=2, PGGAN=3, BIGGAN=4
  • choose Encoder start_features (--z_dim) carefully, the value are: 16->1024x1024, 32->512x512, 64->256x256
  • if go on training, set --checkpoint_dir_E which path save pre-trained Encoder model
  • --checkpoint_dir_GAN is needed, StyleGANv1 is a directory(contains 3 filers: Gm, Gs, center-tensor) , others are file path (.pth or .pt)
    parser = argparse.ArgumentParser(description='the training args')
    parser.add_argument('--iterations', type=int, default=210000) # epoch = iterations//30000
    parser.add_argument('--lr', type=float, default=0.0015)
    parser.add_argument('--beta_1', type=float, default=0.0)
    parser.add_argument('--batch_size', type=int, default=2)
    parser.add_argument('--experiment_dir', default=None) #None
    parser.add_argument('--checkpoint_dir_GAN', default='./checkpoint/stylegan_v2/stylegan2_ffhq1024.pth') #None  ./checkpoint/stylegan_v1/ffhq1024/ or ./checkpoint/stylegan_v2/stylegan2_ffhq1024.pth or ./checkpoint/biggan/256/G-256.pt
    parser.add_argument('--config_dir', default='./checkpoint/biggan/256/biggan-deep-256-config.json') # BigGAN needs it
    parser.add_argument('--checkpoint_dir_E', default=None)
    parser.add_argument('--img_size',type=int, default=1024)
    parser.add_argument('--img_channels', type=int, default=3)# RGB:3 ,L:1
    parser.add_argument('--z_dim', type=int, default=512) # PGGAN , StyleGANs are 512. BIGGAN is 128
    parser.add_argument('--mtype', type=int, default=2) # StyleGANv1=1, StyleGANv2=2, PGGAN=3, BigGAN=4
    parser.add_argument('--start_features', type=int, default=16)  # 16->1024 32->512 64->256

Pre-trained Model

We offered pre-trainned GANs and their corresponding encoders here: models (default setting is the case1 ).

GANs:

  • StyleGANv1-(FFHQ1024, Car512, Cat256) models which contain 3 files Gm, Gs and center-tensor.
  • PGGAN and StyleGANv2. A single .pth file gets Gm, Gs and center-tensor together.
  • BigGAN 128x128 ,256x256, and 512x512: each type contain a config file and model (.pt)

Encoders:

  • StyleGANv1 FFHQ (case 2) for real-image embedding and process.
  • StyleGANv2 LSUN Cat 256, they are one models from case 1 (Grad-CAM based attentions) and both models from case 2 (Grad-Cam based and Center-aligned Attentions for ablation study):
  • StyleGANv2 FFHQ (case 1)
  • Biggan-256 (case 1)

If you want to try more GANs, cite more pre-trained GANs below:

Acknowledgements

Pre-trained GANs:

StyleGANv1: https://github.com/podgorskiy/StyleGan.git, ( Converting code for official pre-trained model is here: https://github.com/podgorskiy/StyleGAN_Blobless.git) StyleGANv2 and PGGAN: https://github.com/genforce/genforce.git BigGAN: https://github.com/huggingface/pytorch-pretrained-BigGAN

Comparing Works:

In-Domain GAN: https://github.com/genforce/idinvert_pytorch pSp: https://github.com/eladrich/pixel2style2pixel ALAE: https://github.com/podgorskiy/ALAE.git

Related Works:

Grad-CAM & Grad-CAM++: https://github.com/yizt/Grad-CAM.pytorch SSIM Index: https://github.com/Po-Hsun-Su/pytorch-ssim

Our method implementation partly borrow from the above works (ALAE and Related Works). We would like to thank those authors.

If you have any questions, please contact us by E-mail ( [email protected]). Pull request or any comment is also welcome.

License

The code of this repository is released under the Apache 2.0 license.
The directories models/biggan and models/stylegan2 are provided under the MIT license.

Cite

@misc{yu2021adaptable,
      title={Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions}, 
      author={Cheng Yu and Wenmin Wang},
      year={2021},
      eprint={2108.10201},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

简体中文:

如何应用于编辑人脸

Owner
owl
Be a strong man & Try to be a great man
owl
PlenOctrees: NeRF-SH Training & Conversion

PlenOctrees Official Repo: NeRF-SH training and conversion This repository contains code to train NeRF-SH and to extract the PlenOctree, constituting

Alex Yu 323 Dec 29, 2022
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
An implementation of RetinaNet in PyTorch.

RetinaNet An implementation of RetinaNet in PyTorch. Installation Training COCO 2017 Pascal VOC Custom Dataset Evaluation Todo Credits Installation In

Conner Vercellino 297 Jan 04, 2023
For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training.

LongScientificFormer For encoding a text longer than 512 tokens, for example 800. Set max_pos to 800 during both preprocessing and training. Some code

Athar Sefid 6 Nov 02, 2022
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images

Code and result about CCAFNet(IEEE TMM) 'CCAFNet: Crossflow and Cross-scale Adaptive Fusion Network for Detecting Salient Objects in RGB-D Images' IEE

zyrant丶 14 Dec 29, 2021
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Segmentation from Natural Language Expressions This repository contains the code for the following paper: R. Hu, M. Rohrbach, T. Darrell, Segmentation

Ronghang Hu 88 May 24, 2022
Weakly supervised medical named entity classification

Trove Trove is a research framework for building weakly supervised (bio)medical named entity recognition (NER) and other entity attribute classifiers

60 Nov 18, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
CVPR2020 Counterfactual Samples Synthesizing for Robust VQA

CVPR2020 Counterfactual Samples Synthesizing for Robust VQA This repo contains code for our paper "Counterfactual Samples Synthesizing for Robust Visu

72 Dec 22, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition

VL-LTR: Learning Class-wise Visual-Linguistic Representation for Long-Tailed Visual Recognition Usage First, install PyTorch 1.7.1+, torchvision 0.8.2

40 Dec 12, 2022
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022