PyTorch common framework to accelerate network implementation, training and validation

Overview

pytorch-framework

PyTorch common framework to accelerate network implementation, training and validation.

This framework is inspired by works from MMLab, which modularize the data, network, loss, metric, etc. to make the framework to be flexible, easy to modify and to extend.

How to use

# install necessary libs
pip install -r requirements.txt

The framework contains six different subfolders:

  • networks: all networks should be implemented under the networks folder with {NAME}_network.py filename.
  • datasets: all datasets should be implemented under the datasets folder with {NAME}_dataset.py filename.
  • losses: all losses should be implemented under the losses folder with {NAME}_loss.py filename.
  • metrics: all metrics should be implemented under the metrics folder with {NAME}_metric.py filename.
  • models: all models should be implemented under the models folder with {NAME}_model.py filename.
  • utils: all util functions should be implemented under the utils folder with {NAME}_util.py filename.

The training and validation procedure can be defined in the specified .yaml file.

# training 
CUDA_VISIBLE_DEVICES=gpu_ids python train.py --opt options/train.yaml

# validation/test
CUDA_VISIBLE_DEVICES=gpu_ids python test.py --opt options/test.yaml

In the .yaml file for training, you can define all the things related to training such as the experiment name, model, dataset, network, loss, optimizer, metrics and other hyper-parameters. Here is an example to train VGG16 for image classification:

# general setting
name: vgg_train
backend: dp # DataParallel
type: ClassifierModel
num_gpu: auto

# path to resume network
path:
  resume_state: ~

# datasets
datasets:
  train_dataset:
    name: TrainDataset
    type: ImageNet
    data_root: ../data/train_data
  val_dataset:
    name: ValDataset
    type: ImageNet
    data_root: ../data/val_data
  # setting for train dataset
  batch_size: 8

# network setting
networks:
  classifier:
    type: VGG16
    num_classes: 1000

# training setting
train:
  total_iter: 10000
  optims:
    classifier:
      type: Adam
      lr: 1.0e-4
  schedulers:
    classifier:
      type: none
  losses:
    ce_loss:
      type: CrossEntropyLoss

# validation setting
val:
  val_freq: 10000

# log setting
logger:
  print_freq: 100
  save_checkpoint_freq: 10000

In the .yaml file for validation, you can define all the things related to validation such as: model, dataset, metrics. Here is an example:

# general setting
name: test
backend: dp # DataParallel
type: ClassifierModel
num_gpu: auto
manual_seed: 1234

# path
path:
  resume_state: experiments/train/models/final.pth
  resume: false

# datasets
datasets:
  val_dataset:
    name: ValDataset
    type: ImageNet
    data_root: ../data/test_data

# network setting
networks:
  classifier:
    type: VGG
    num_classes: 1000

# validation setting
val:
  metrics:
    accuracy:
      type: calculate_accuracy

Framework Details

The core of the framework is the BaseModel in the base_model.py. The BaseModel controls the whole training/validation procedure from initialization over training/validation iteration to results saving.

  • Initialization: In the model initialization, it will read the configuration in the .yaml file and construct the corresponding networks, datasets, losses, optimizers, metrics, etc.
  • Training/Validation: In the training/validation procedure, you can refer the training process in the train.py and the validation process in the test.py.
  • Results saving: The model will automatically save the state_dict for networks, optimizers and other hyperparameters during the training.

The configuration of the framework is down by Register in the registry.py. The Register has a object map (key-value pair). The key is the name of the object, the value is the class of the object. There are total 4 different registers for networks, datasets, losses and metrics. Here is an example to register a new network:

import torch
import torch.nn as nn

from utils.registry import NETWORK_REGISTRY

@NETWORK_REGISTRY.register()
class MyNet(nn.Module):
  ...
Owner
Dongliang Cao
Dongliang Cao
Official implementation of Neural Bellman-Ford Networks (NeurIPS 2021)

NBFNet: Neural Bellman-Ford Networks This is the official codebase of the paper Neural Bellman-Ford Networks: A General Graph Neural Network Framework

MilaGraph 136 Dec 21, 2022
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
Fashion Recommender System With Python

Fashion-Recommender-System Thr growing e-commerce industry presents us with a la

Omkar Gawade 2 Feb 02, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
Benchmark datasets, data loaders, and evaluators for graph machine learning

Overview The Open Graph Benchmark (OGB) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Datasets cover

1.5k Jan 05, 2023
A decent AI that solves daily Wordle puzzles. Works with different websites with similar wordlists,.

Wordle-AI A decent AI that solves daily "Wordle" puzzles. Works with different websites with similar wordlists. When prompted with "Word:" enter the w

Ethan 1 Feb 10, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Magnetic Graph Convolutional Networks About The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via M

3 Feb 25, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Implicit Model Specialization through DAG-based Decentralized Federated Learning

Federated Learning DAG Experiments This repository contains software artifacts to reproduce the experiments presented in the Middleware '21 paper "Imp

Operating Systems and Middleware Group 5 Oct 16, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
TensorFlow implementation of ENet, trained on the Cityscapes dataset.

segmentation TensorFlow implementation of ENet (https://arxiv.org/pdf/1606.02147.pdf) based on the official Torch implementation (https://github.com/e

Fredrik Gustafsson 248 Dec 16, 2022