Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Overview

Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild

Demo | Project Page | Video | Paper

Shangzhe Wu, Christian Rupprecht, Andrea Vedaldi, Visual Geometry Group, University of Oxford. In CVPR 2020 (Best Paper Award).

We propose a method to learn weakly symmetric deformable 3D object categories from raw single-view images, without ground-truth 3D, multiple views, 2D/3D keypoints, prior shape models or any other supervision.

Setup (with Anaconda)

1. Install dependencies:

conda env create -f environment.yml

OR manually:

conda install -c conda-forge scikit-image matplotlib opencv moviepy pyyaml tensorboardX

2. Install PyTorch:

conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 -c pytorch

Note: The code is tested with PyTorch 1.2.0 and CUDA 9.2 on CentOS 7. A GPU version is required for training and testing, since the neural_renderer package only has GPU implementation. You are still able to run the demo without GPU.

3. Install neural_renderer:

This package is required for training and testing, and optional for the demo. It requires a GPU device and GPU-enabled PyTorch.

pip install neural_renderer_pytorch

Note: It may fail if you have a GCC version below 5. If you do not want to upgrade your GCC, one alternative solution is to use conda's GCC and compile the package from source. For example:

conda install gxx_linux-64=7.3
git clone https://github.com/daniilidis-group/neural_renderer.git
cd neural_renderer
python setup.py install

4. (For demo only) Install facenet-pytorch:

This package is optional for the demo. It allows automatic human face detection.

pip install facenet-pytorch

Datasets

  1. CelebA face dataset. Please download the original images (img_celeba.7z) from their website and run celeba_crop.py in data/ to crop the images.
  2. Synthetic face dataset generated using Basel Face Model. This can be downloaded using the script download_synface.sh provided in data/.
  3. Cat face dataset composed of Cat Head Dataset and Oxford-IIIT Pet Dataset (license). This can be downloaded using the script download_cat.sh provided in data/.
  4. Synthetic car dataset generated from ShapeNet cars. The images are rendered from with random viewpoints from the top, where the cars are primarily oriented vertically. This can be downloaded using the script download_syncar.sh provided in data/.

Please remember to cite the corresponding papers if you use these datasets.

Pretrained Models

Download pretrained models using the scripts provided in pretrained/, eg:

cd pretrained && sh download_pretrained_celeba.sh

Demo

python -m demo.demo --input demo/images/human_face --result demo/results/human_face --checkpoint pretrained/pretrained_celeba/checkpoint030.pth

Options:

  • --gpu: enable GPU
  • --detect_human_face: enable automatic human face detection and cropping using MTCNN provided in facenet-pytorch. This only works on human face images. You will need to manually crop the images for other objects.
  • --render_video: render 3D animations using neural_renderer (GPU is required)

Training and Testing

Check the configuration files in experiments/ and run experiments, eg:

python run.py --config experiments/train_celeba.yml --gpu 0 --num_workers 4

Citation

@InProceedings{Wu_2020_CVPR,
  author = {Shangzhe Wu and Christian Rupprecht and Andrea Vedaldi},
  title = {Unsupervised Learning of Probably Symmetric Deformable 3D Objects from Images in the Wild},
  booktitle = {CVPR},
  year = {2020}
}
Pip-package for trajectory benchmarking from "Be your own Benchmark: No-Reference Trajectory Metric on Registered Point Clouds", ECMR'21

Map Metrics for Trajectory Quality Map metrics toolkit provides a set of metrics to quantitatively evaluate trajectory quality via estimating consiste

Mobile Robotics Lab. at Skoltech 31 Oct 28, 2022
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
Parameter-ensemble-differential-evolution - Shows how to do parameter ensembling using differential evolution.

Ensembling parameters with differential evolution This repository shows how to ensemble parameters of two trained neural networks using differential e

Sayak Paul 9 May 04, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
This folder contains the python code of UR5E's advanced forward kinematics model.

This folder contains the python code of UR5E's advanced forward kinematics model. By entering the angle of the joint of UR5e, the detailed coordinates of up to 48 points around the robot arm can be c

Qiang Wang 4 Sep 17, 2022
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
TensorFlow (Python API) implementation of Neural Style

neural-style-tf This is a TensorFlow implementation of several techniques described in the papers: Image Style Transfer Using Convolutional Neural Net

Cameron 3.1k Jan 02, 2023
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
Machine Learning with JAX Tutorials

The purpose of this repo is to make it easy to get started with JAX. It contains my "Machine Learning with JAX" series of tutorials (YouTube videos and Jupyter Notebooks) as well as the content I fou

Aleksa Gordić 372 Dec 28, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022