We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Overview

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning

Update: The lastest code will be updated in this branch. Please switch to CORL2020 branch if you are looking for the Model-based Heuristic Deep RL approach.

Developed by Le Chen and Yunke Ao from Autonomous Systems Lab (ASL) at ETH Zurich.

1 Introduction

In this work we presents a novel formulation to learn a motion policy to be executed on a robot arm for automatic data collection for calibrating intrinsics and extrinsics jointly. Our approach models the calibration process compactly using model-free deep reinforcement learning to derive a policy that guides the motions of a robotic arm holding the sensor to efficiently collect measurements that can be used for both camera intrinsic calibration and camera-IMU extrinsic calibration. Given the current pose and collected measurements, the learned policy generates the subsequent transformation that optimizes sensor calibration accuracy. The evaluations in simulation and on a real robotic system show that our learned policy generates favorable motion trajectories and collects enough measurements efficiently that yield the desired intrinsics and extrinsics with short path lengths. In simulation we are able to perform calibrations $10\times$ faster than hand-crafted policies, which transfers to a real-world speed up of $3\times$ over a human expert.

2 Usage

Our code is tested on Ubuntu 18.04 LTS (Bionic Beaver) and ROS Melodic Morenia with GPU GTX 1660 Ti and CUDA 11.2.

2.1 Build Instructions

  • Install required dependencies:
sudo apt-get install build-essential software-properties-common
sudo apt-get install bc curl ca-certificates fakeroot gnupg2 libssl-dev lsb-release libelf-dev bison flex
sudo apt-get install ros-melodic-moveit, ros-melodic-moveit-visual-tools, ros-melodic-cmake-modules
sudo apt-get install ros-melodic-libfranka ros-melodic-franka-ros, ros-melodic-joint-trajectory-controller
sudo apt-get install ros-melodic-vision-opencv ros-melodic-image-transport-plugins
sudo apt-get install python-setuptools python-rosinstall ipython libeigen3-dev libboost-all-dev doxygen
sudo apt-get install libopencv-dev libgtk-3-dev python-catkin-tools
sudo apt-get install python-matplotlib python-scipy python-git python-pip ipython
sudo apt-get install libtbb-dev libblas-dev liblapack-dev libv4l-dev, libpoco-dev

pip install opencv-python
pip install opencv-contrib-python
pip install --upgrade tensorflow
pip install python-igraph --upgrade
pip install pyyaml
pip install rospkg
pip install matplotlib
pip install pandas
pip install pytorch
pip install wandb
pip install PyKDL
pip install gym
  • Clone the repository and catkin build:
cd ~/catkin_ws
git clone https://github.com/clthegoat/Learn-to-Calibrate.git
cd Learn-to-Calibrate
git checkout master
cd ../
mv Learn-to-Calibrate src
catkin build
source ~/catkin_ws/devel/setup.bash

2.2 Configuration

  • Please change the file saving directory in franka_cal_sim_single/config/config.yaml before training or testing!

2.3 Running the code

2.3.1 Training:

  • In terminal 1:
source ~/catkin_ws/devel/setup.bash
roslaunch franka_cal_sim_single cam_imu_ext_che.launch
  • In terminal 2:
source ~/catkin_ws/devel/setup.bash
cd src/franka_cal_sim/python/algorithms
python RL_algo_sac_int_ext.py

2.3.2 Testing:

  • In terminal 1:
source ~/catkin_ws/devel/setup.bash
roslaunch franka_cal_sim_single cam_imu_ext_che.launch
  • In terminal 2:
source ~/catkin_ws/devel/setup.bash
cd src/franka_cal_sim/python/test_policies/
python RL_algo_sac_ext_int_test.py

3 Citing

Please cite the following paper when using our code for your research:

@article{chen2020learning,
  title={Learning Trajectories for Visual-Inertial System Calibration via Model-based Heuristic Deep Reinforcement Learning},
  author={Chen, Le and Ao, Yunke and Tschopp, Florian and Cramariuc, Andrei and Breyer, Michel and Chung, Jen Jen and Siegwart, Roland and Cadena, Cesar},
  journal={arXiv preprint arXiv:2011.02574},
  year={2020}
}

4 Code reference:

Our code is based on the following repositories:

Owner
ETHZ ASL
ETHZ ASL
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
BTC-Generator - BTC Generator With Python

Что такое BTC-Generator? Это генератор чеков всеми любимого @BTC_BANKER_BOT Для

DoomGod 3 Aug 24, 2022
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
SuperSDR: multiplatform KiwiSDR + CAT transceiver integrator

SuperSDR SuperSDR integrates a realtime spectrum waterfall and audio receive from any KiwiSDR around the world, together with a local (or remote) cont

Marco Cogoni 30 Nov 29, 2022
[ACL 2022] LinkBERT: A Knowledgeable Language Model 😎 Pretrained with Document Links

LinkBERT: A Knowledgeable Language Model Pretrained with Document Links This repo provides the model, code & data of our paper: LinkBERT: Pretraining

Michihiro Yasunaga 264 Jan 01, 2023
Self-Supervised Contrastive Learning of Music Spectrograms

Self-Supervised Music Analysis Self-Supervised Contrastive Learning of Music Spectrograms Dataset Songs on the Billboard Year End Hot 100 were collect

27 Dec 10, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
[arXiv] What-If Motion Prediction for Autonomous Driving ❓🚗💨

WIMP - What If Motion Predictor Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations] Setup Requirements The W

William Qi 96 Dec 29, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Hierarchical Time Series Forecasting with a familiar API

scikit-hts Hierarchical Time Series with a familiar API. This is the result from not having found any good implementations of HTS on-line, and my work

Carlo Mazzaferro 204 Dec 17, 2022
A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

A Collection of LiDAR-Camera-Calibration Papers, Toolboxes and Notes

443 Jan 06, 2023
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
Fast EMD for Python: a wrapper for Pele and Werman's C++ implementation of the Earth Mover's Distance metric

PyEMD: Fast EMD for Python PyEMD is a Python wrapper for Ofir Pele and Michael Werman's implementation of the Earth Mover's Distance that allows it to

William Mayner 433 Dec 31, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks

Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor

Leonardo Zepeda-Núñez 2 Feb 11, 2022