Canonical Appearance Transformations

Overview

CAT-Net: Learning Canonical Appearance Transformations

Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations for Direct Visual Localization Under Illumination Change".

Dependencies

  • numpy
  • matpotlib
  • pytorch + torchvision (1.2)
  • Pillow
  • progress (for progress bars in train/val/test loops)
  • tensorboard + tensorboardX (for visualization)
  • pyslam + liegroups (optional, for running odometry/localization experiments)
  • OpenCV (optional, for running odometry/localization experiments)

Training the CAT

  1. Download the ETHL dataset from here or the Virtual KITTI dataset from here
    1. ETHL only: rename ethl1/2 to ethl1/2_static.
    2. ETHL only: Update the local paths in tools/make_ethl_real_sync.py and run python3 tools/make_ethl_real_sync.py to generate a synchronized copy of the real sequences.
  2. Update the local paths in run_cat_ethl/vkitti.py and run python3 run_cat_ethl/vkitti.py to start training.
  3. In another terminal run tensorboard --port [port] --logdir [path] to start the visualization server, where [port] should be replaced by a numeric value (e.g., 60006) and [path] should be replaced by your local results directory.
  4. Tune in to localhost:[port] and watch the action.

Running the localization experiments

  1. Ensure the pyslam and liegroups packages are installed.
  2. Update the local paths in make_localization_data.py and run python3 make_localization_data.py [dataset] to compile the model outputs into a localization_data directory.
  3. Update the local paths in run_localization_[dataset].py and run python3 run_localization_[dataset].py [rgb,cat] to compute VO and localization results using either the original RGB or CAT-transformed images.
  4. You can compute localization errors against ground truth using the compute_localization_errors.py script, which generates CSV files and several plots. Update the local paths and run python3 compute_localization_errors.py [dataset].

Citation

If you use this code in your research, please cite:

@article{2018_Clement_Learning,
  author = {Lee Clement and Jonathan Kelly},
  journal = {{IEEE} Robotics and Automation Letters},
  link = {https://arxiv.org/abs/1709.03009},
  title = {How to Train a {CAT}: Learning Canonical Appearance Transformations for Direct Visual Localization Under Illumination Change},
  year = {2018}
}
Owner
STARS Laboratory
We are the Space and Terrestrial Autonomous Robotic Systems Laboratory at the University of Toronto
STARS Laboratory
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Reimplement of SimSwap training code

SimSwap-train Reimplement of SimSwap training code Instructions 1.Environment Preparation (1)Refer to the README document of SIMSWAP to configure the

seeprettyface.com 111 Dec 31, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Code for NeurIPS 2021 paper "Curriculum Offline Imitation Learning"

README The code is based on the ILswiss. To run the code, use python run_experiment.py --nosrun -e your YAML file -g gpu id Generally, run_experim

ApexRL 12 Mar 19, 2022
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
A copy of Ares that costs 30 fucking dollars.

Finalement, j'ai décidé d'abandonner cette idée, je me suis comporté comme un enfant qui été en colère. Comme m'ont dit certaines personnes j'ai des c

Bleu 24 Apr 14, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
A Python training and inference implementation of Yolov5 helmet detection in Jetson Xavier nx and Jetson nano

yolov5-helmet-detection-python A Python implementation of Yolov5 to detect head or helmet in the wild in Jetson Xavier nx and Jetson nano. In Jetson X

12 Dec 05, 2022
Human Activity Recognition example using TensorFlow on smartphone sensors dataset and an LSTM RNN. Classifying the type of movement amongst six activity categories - Guillaume Chevalier

LSTMs for Human Activity Recognition Human Activity Recognition (HAR) using smartphones dataset and an LSTM RNN. Classifying the type of movement amon

Guillaume Chevalier 3.1k Dec 30, 2022
banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services.

banditml is a lightweight contextual bandit & reinforcement learning library designed to be used in production Python services. This library is developed by Bandit ML and ex-authors of Facebook's app

Bandit ML 51 Dec 22, 2022
Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions

EMS-COLS-recourse Initial Code for Low-Cost Algorithmic Recourse for Users With Uncertain Cost Functions Folder structure: data folder contains raw an

Prateek Yadav 1 Nov 25, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

SubOmiEmbed: Self-supervised Representation Learning of Multi-omics Data for Cancer Type Classification

Sayed Hashim 3 Nov 15, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023