Code for CVPR 2021 oral paper "Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts"

Overview

Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts

PointContrast

The rapid progress in 3D scene understanding has come with growing demand for data; however, collecting and annotating 3D scenes (e.g. point clouds) are notoriously hard. For example, the number of scenes (e.g. indoor rooms) that can be accessed and scanned might be limited; even given sufficient data, acquiring 3D labels (e.g. instance masks) requires intensive human labor. In this paper, we explore data-efficient learning for 3D point cloud. As a first step towards this direction, we propose Contrastive Scene Contexts, a 3D pre-training method that makes use of both point-level correspondences and spatial contexts in a scene. Our method achieves state-of-the-art results on a suite of benchmarks where training data or labels are scarce. Our study reveals that exhaustive labelling of 3D point clouds might be unnecessary; and remarkably, on ScanNet, even using 0.1% of point labels, we still achieve 89% (instance segmentation) and 96% (semantic segmentation) of the baseline performance that uses full annotations.

[CVPR 2021 Paper] [Video] [Project Page] [ScanNet Data-Efficient Benchmark]

Environment

This codebase was tested with the following environment configurations.

  • Ubuntu 20.04
  • CUDA 10.2
  • GCC 7.3.0
  • Python 3.7.7
  • PyTorch 1.5.1
  • MinkowskiEngine v0.4.3

Installation

We use conda for the installation process:

# Install virtual env and PyTorch
conda create -n sparseconv043 python=3.7
conda activate sparseconv043
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 -c pytorch

# Complie and install MinkowskiEngine 0.4.3.
conda install mkl mkl-include -c intel
wget https://github.com/NVIDIA/MinkowskiEngine/archive/refs/tags/v0.4.3.zip
cd MinkowskiEngine-0.4.3 
python setup.py install

Next, download Contrastive Scene Contexts git repository and install the requirement from the root directory.

git clone https://github.com/facebookresearch/ContrastiveSceneContexts.git
cd ContrastiveSceneContexts
pip install -r requirements.txt

Our code also depends on PointGroup and PointNet++.

# Install OPs in PointGroup by:
conda install -c bioconda google-sparsehash
cd downstream/semseg/lib/bfs/ops
python setup.py build_ext --include-dirs=YOUR_ENV_PATH/include
python setup.py install

# Install PointNet++
cd downstream/votenet/models/backbone/pointnet2
python setup.py install

Pre-training on ScanNet

Data Pre-processing

For pre-training, one can generate ScanNet Pair data by following code (need to change the TARGET and SCANNET_DIR accordingly in the script).

cd pretrain/scannet_pair
./preprocess.sh

This piece of code first extracts pointcloud from partial frames, and then computes a filelist of overlapped partial frames for each scene. Generate a combined txt file called overlap30.txt of filelists of each scene by running the code

cd pretrain/scannet_pair
python generate_list.py --target_dir TARGET

This overlap30.txt should be put into folder TARGET/splits.

Pre-training

Our codebase enables multi-gpu training with distributed data parallel (DDP) module in pytorch. To train PointContrast with 8 GPUs (batch_size=32, 4 per GPU) on a single server:

cd pretrain/contrastive_scene_contexts
# Pretrain with SparseConv backbone
OUT_DIR=./output DATASET=ROOT_PATH_OF_DATA scripts/pretrain_sparseconv.sh
# Pretrain with PointNet++ backbone
OUT_DIR=./output DATASET=ROOT_PATH_OF_DATA scripts/pretrain_pointnet2.sh

ScanNet Downstream Tasks

Data Pre-Processing

We provide the code for pre-processing the data for ScanNet downstream tasks. One can run following code to generate the training data for semantic segmentation and instance segmentation.

# Edit path variables, SCANNET_OUT_PATH
cd downstream/semseg/lib/datasets/preprocessing
python scannet.py

For ScanNet detection data generation, please refer to VoteNet ScanNet Data. Run command to soft link the generated detection data (located in PATH_DET_DATA) to following location:

# soft link detection data
cd downstream/det/
ln -s PATH_DET_DATA datasets/scannet/scannet_train_detection_data

For Data-Efficient Learning, download the scene_list and points_list as well as bbox_list from ScanNet Data-Efficient Benchmark. To Active Selection for points_list, run following code:

# Get features per point
cd downstream/semseg/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/inference_features.sh
# run k-means on feature space
cd lib
python sampling_points.py --point_data SCANNET_OUT_PATH --feat_data PATH_CHECKPOINT

Semantic Segmentation

We provide code for the semantic segmentation experiments conducted in our paper. Our code supports multi-gpu training. To train with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet.sh

For Limited Scene Reconstruction, run following code:

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT TRAIN_FILE=PATH_SCENE_LIST ./scripts/data_efficient/by_scenes.sh

For Limited Points Annotation, run following code:

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT SAMPLED_INDS=PATH_SCENE_LIST ./scripts/data_efficient/by_points.sh

Model Zoo

We also provide our pre-trained checkpoints (and log file) for reference. You can evalutate our pre-trained model by running code:

# PATH_CHECKPOINT points to downloaded pre-trained model path:
cd downstream/semseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet.sh
Training Data mIoU (val) Initialization Pre-trained Model Logs Tensorboard
1% scenes 29.3 download download link link
5% scenes 45.4 download download link link
10% scenes 59.5 download download link link
20% scenes 64.1 download download link link
100% scenes 73.8 download download link link
20 points 53.8 download download link link
50 points 62.9 download download link link
100 points 66.9 download download link link
200 points 69.0 download download link link

Instance Segmentation

We provide code for the instance segmentation experiments conducted in our paper. Our code supports multi-gpu training. To train with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet.sh

For Limited Scene Reconstruction, run following code:

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT TRAIN_FILE=PATH_SCENE_LIST ./scripts/data_efficient/by_scenes.sh

For Limited Points Annotation, run following code:

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT SAMPLED_INDS=PATH_POINTS_LIST ./scripts/data_efficient/by_points.sh

For ScanNet Benchmark, run following code (train on train+val and evaluate on val):

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=SCANNET_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet_benchmark.sh

Model Zoo

We provide our pre-trained checkpoints (and log file) for reference. You can evalutate our pre-trained model by running code:

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/insseg/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet.sh

For submitting to ScanNet Benchmark with our pre-trained model, run following command (the submission file is located in output/benchmark_instance):

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/insseg/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet_benchmark.sh
Training Data [email protected] (val) Initialization Pre-trained Model Logs Curves
1% scenes 12.3 download download link link
5% scenes 33.9 download download link link
10% scenes 45.3 download download link link
20% scenes 49.8 download download link link
100% scenes 59.4 download download link link
20 points 27.2 download download link link
50 points 35.7 download download link link
100 points 43.6 download download link link
200 points 50.4 download download link link
train + val 76.5 (64.8 on test) download download link link

3D Object Detection

We provide the code for 3D Object Detection downstream task. The code is adapted directly fron VoteNet. Additionally, we provide two backones, namely PointNet++ and SparseConv. To fine-tune the downstream task, run following command:

cd downstream/votenet/
# train sparseconv backbone
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet.sh
# train pointnet++ backbone
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_scannet_pointnet.sh

For Limited Scene Reconstruction, run following code:

# Edit relevant path variables and then run:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT TRAIN_FILE=PATH_SCENE_LIST ./scripts/data_efficient/by_Scentrain_scannet.sh

For Limited Bbox Annotation, run following code:

# Edit relevant path variables and then run:
cd downstream/votenet/
DATAPATH=SCANNET_DATA LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT SAMPLED_BBOX=PATH_BBOX_LIST ./scripts/data_efficient/by_bboxes.sh

For submitting to ScanNet Data-Efficient Benchmark, you can set "test.write_to_bencmark=True" in "downstream/votenet/scripts/test_scannet.sh" or "downstream/votenet/scripts/test_scannet_pointnet.sh"

Model Zoo

We provide our pre-trained checkpoints (and log file) for reference. You can evaluate our pre-trained model by running following code.

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_scannet.sh
Training Data [email protected] (val) [email protected] (val) Initialize Pre-trained Model Logs Curves
10% scenes 9.9 24.7 download download link link
20% scenes 21.4 41.4 download download link link
40% scenes 29.5 52.0 download download link link
80% scenes 36.3 56.3 download download link link
100% scenes 39.3 59.1 download download link link
100% scenes (PointNet++) 39.2 62.5 download download link link
1 bboxes 30.3 54.5 download download link link
2 bboxes 32.4 55.3 download download link link
4 bboxes 34.6 58.9 download download link link
7 bboxes 35.9 59.7 download download link link

Stanford 3D (S3DIS) Fine-tuning

Data Pre-Processing

We provide the code for pre-processing the data for Stanford3D (S3DIS) downstream tasks. One can run following code to generate the training data for semantic segmentation and instance segmentation.

# Edit path variables, STANFORD_3D_OUT_PATH
cd downstream/semseg/lib/datasets/preprocessing
python stanford.py

Semantic Segmentation

We provide code for the semantic segmentation experiments conducted in our paper. Our code supports multi-gpu training. To fine-tune with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/semseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_stanford3d.sh

Model Zoo

We provide our pre-trained model and log file for reference. You can evalutate our pre-trained model by running code:

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/semseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_stanford3d.sh
Training Data mIoU (val) Initialization Pre-trained Model Logs Tensorboard
100% scenes 72.2 download download link link

Instance Segmentation

We provide code for the instance segmentation experiments conducted in our paper. Our code supports multi-gpu training. To fine-tune with 8 GPUs on a single server,

# Edit relevant path variables and then run:
cd downstream/insseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_stanford3d.sh

Model Zoo

We provide our pre-trained model and log file for reference. You can evaluate our pre-trained model by running code:

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/insseg/
DATAPATH=STANFORD_3D_OUT_PATH LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_stanford3d.sh
Training Data [email protected] (val) Initialization Pre-trained Model Logs Tensorboard
100% scenes 63.4 download download link link

SUN-RGBD Fine-tuning

Data Pre-Processing

For SUN-RGBD detection data generation, please refer to VoteNet SUN-RGBD Data. To soft link generated SUN-RGBD detection data (SUN_RGBD_DATA_PATH) to following location, run the command:

cd downstream/det/datasets/sunrgbd
# soft link 
link -s SUN_RGBD_DATA_PATH/sunrgbd_pc_bbox_votes_50k_v1_train sunrgbd_pc_bbox_votes_50k_v1_train
link -s SUN_RGBD_DATA_PATH/sunrgbd_pc_bbox_votes_50k_v1_val sunrgbd_pc_bbox_votes_50k_v1_val

3D Object Detection

We provide the code for 3D Object Detection downstream task. The code is adapted directly fron VoteNet. To fine-tune the downstream task, run following code:

# Edit relevant path variables and then run:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/train_sunrgbd.sh

Model Zoo

We provide our pre-trained checkpoints (and log file) for reference. You can load our pre-trained model by setting the pre-trained model path to PATH_CHECKPOINT.

# PATH_CHECKPOINT points to pre-trained model path:
cd downstream/votenet/
LOG_DIR=./output PRETRAIN=PATH_CHECKPOINT ./scripts/test_sunrgbd.sh
Training Data [email protected] (val) [email protected] (val) Initialize Pre-trained Model Log Curve
100% scenes 36.4 58.9 download download link link

Citing our paper

@article{hou2020exploring,
  title={Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts},
  author={Hou, Ji and Graham, Benjamin and Nie{\ss}ner, Matthias and Xie, Saining},
  journal={arXiv preprint arXiv:2012.09165},
  year={2020}
}

License

Contrastive Scene Contexts is relased under the MIT License. See the LICENSE file for more details.

Owner
Facebook Research
Facebook Research
An implementation of a sequence to sequence neural network using an encoder-decoder

Keras implementation of a sequence to sequence model for time series prediction using an encoder-decoder architecture. I created this post to share a

Luke Tonin 195 Dec 17, 2022
Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021.

PHDimGeneralization Official implementation of "Intrinsic Dimension, Persistent Homology and Generalization in Neural Networks", NeurIPS 2021. Overvie

Tolga Birdal 13 Nov 08, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
CUda Matrix Multiply library.

cumm CUda Matrix Multiply library. cumm is developed during learning of CUTLASS, which use too much c++ template and make code unmaintainable. So I de

49 Dec 27, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
🙄 Difficult algorithm, Simple code.

🎉TensorFlow2.0-Examples🎉! "Talk is cheap, show me the code." ----- Linus Torvalds Created by YunYang1994 This tutorial was designed for easily divin

1.7k Dec 25, 2022
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Xi Dongbo 78 Nov 29, 2022
Deeply Supervised, Layer-wise Prediction-aware (DSLP) Transformer for Non-autoregressive Neural Machine Translation

Non-Autoregressive Translation with Layer-Wise Prediction and Deep Supervision Training Efficiency We show the training efficiency of our DSLP model b

Chenyang Huang 36 Oct 31, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
Self-supervised learning on Graph Representation Learning (node-level task)

graph_SSL Self-supervised learning on Graph Representation Learning (node-level task) How to run the code To run GRACE, sh run_GRACE.sh To run GCA, sh

Namkyeong Lee 3 Dec 31, 2021
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022