The Habitat-Matterport 3D Research Dataset - the largest-ever dataset of 3D indoor spaces.

Overview

Habitat-Matterport 3D Dataset (HM3D)

The Habitat-Matterport 3D Research Dataset is the largest-ever dataset of 3D indoor spaces. It consists of 1,000 high-resolution 3D scans (or digital twins) of building-scale residential, commercial, and civic spaces generated from real-world environments.

HM3D is free and available here for academic, non-commercial research. Researchers can use it with FAIR’s Habitat simulator to train embodied agents, such as home robots and AI assistants, at scale.

example

This repository contains the code and instructions to reproduce experiments from our NeurIPS 2021 paper. If you use the HM3D dataset or the experimental code in your research, please cite the HM3D paper.

@inproceedings{ramakrishnan2021hm3d,
  title={Habitat-Matterport 3D Dataset ({HM}3D): 1000 Large-scale 3D Environments for Embodied {AI}},
  author={Santhosh Kumar Ramakrishnan and Aaron Gokaslan and Erik Wijmans and Oleksandr Maksymets and Alexander Clegg and John M Turner and Eric Undersander and Wojciech Galuba and Andrew Westbury and Angel X Chang and Manolis Savva and Yili Zhao and Dhruv Batra},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)},
  year={2021},
  url={https://openreview.net/forum?id=-v4OuqNs5P}
}

Please check out our website for details on downloading and visualizing the HM3D dataset.

Installation instructions

We provide a common set of instructions to setup the environment to run all our experiments.

  1. Clone the HM3D github repository and add it to PYTHONPATH.

    git clone https://github.com/facebookresearch/habitat-matterport3d-dataset.git
    cd habitat-matterport3d-dataset
    export PYTHONPATH=$PYTHONPATH:$PWD
    
  2. Create conda environment and activate it.

    conda create -n hm3d python=3.8.3
    conda activate hm3d
    
  3. Install habitat-sim using conda.

    conda install habitat-sim headless -c conda-forge -c aihabitat
    

    See habitat-sim's installation instructions for more details.

  4. Install trimesh with soft dependencies.

    pip install "trimesh[easy]==3.9.1"
    
  5. Install remaining requirements from pip.

    pip install -r requirements.txt
    

Downloading datasets

In our paper, we benchmarked HM3D against prior indoor scene datasets such as Gibson, MP3D, RoboThor, Replica, and ScanNet.

  • Download each dataset based on these instructions from habitat-sim. In the case of RoboThor, convert the raw scan assets to GLB using assimp.

    assimp export  
         
    
         
  • Once the datasets are download and processed, create environment variables pointing to the corresponding scene paths.

    export GIBSON_ROOT=
         
          
    export MP3D_ROOT=
          
           
    export ROBOTHOR_ROOT=
           
            
    export HM3D_ROOT=
            
             
    export REPLICA_ROOT=
             
               export SCANNET_ROOT=
               
              
             
            
           
          
         

Running experiments

We provide the code for reproducing the results from our paper in different directories.

  • scale_comparison contains the code for comparing the scale of HM3D with other datasets (Tab. 1 in the paper).
  • quality_comparison contains the code for comparing the reconstruction completeness and visual fidelity of HM3D with other datasets (Fig. 4 and Tab. 5 in the paper).
  • pointnav_comparison contains the configs and instructions to train and evaluate PointNav agents on HM3D and other datasets (Tab. 2 and Fig. 7 in the paper).

We further provide README files within each directory with instructions for running the corresponding experiments.

Acknowledgements

We thank all the volunteers who contributed to the dataset curation effort: Harsh Agrawal, Sashank Gondala, Rishabh Jain, Shawn Jiang, Yash Kant, Noah Maestre, Yongsen Mao, Abhinav Moudgil, Sonia Raychaudhuri, Ayush Shrivastava, Andrew Szot, Joanne Truong, Madhawa Vidanapathirana, Joel Ye. We thank our collaborators at Matterport for their contributions to the dataset: Conway Chen, Victor Schwartz, Nicole Rogers, Sachal Dhillon, Raghu Munaswamy, Mark Anderson.

License

The code in this repository is MIT licensed. See the LICENSE file for details. The trained models are considered data derived from the correspondent scene datasets.

Owner
Meta Research
Meta Research
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
Optical machine for senses sensing using speckle and deep learning

# Senses-speckle [Remote Photonic Detection of Human Senses Using Secondary Speckle Patterns](https://doi.org/10.21203/rs.3.rs-724587/v1) paper Python

Zeev Kalyuzhner 0 Sep 26, 2021
Methods to get the probability of a changepoint in a time series.

Bayesian Changepoint Detection Methods to get the probability of a changepoint in a time series. Both online and offline methods are available. Read t

Johannes Kulick 554 Dec 30, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Process JSON files for neural recording sessions using Medtronic's BrainSense Percept PC neurostimulator

percept_processing This code processes JSON files for streamed neural data using Medtronic's Percept PC neurostimulator with BrainSense Technology for

Maria Olaru 3 Jun 06, 2022
Some pre-commit hooks for OpenMMLab projects

pre-commit-hooks Some pre-commit hooks for OpenMMLab projects. Using pre-commit-hooks with pre-commit Add this to your .pre-commit-config.yaml - rep

OpenMMLab 16 Nov 29, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

Miaoyun Zhao 43 Dec 27, 2022
[EMNLP 2021] Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training

RoSTER The source code used for Distantly-Supervised Named Entity Recognition with Noise-Robust Learning and Language Model Augmented Self-Training, p

Yu Meng 60 Dec 30, 2022
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Facebook Research 18 Dec 28, 2021
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
In this project, we create and implement a deep learning library from scratch.

ARA In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The

22 Aug 23, 2022
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
Natural Intelligence is still a pretty good idea.

Human Learn Machine Learning models should play by the rules, literally. Project Goal Back in the old days, it was common to write rule-based systems.

vincent d warmerdam 641 Dec 26, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022