Code release of paper Improving neural implicit surfaces geometry with patch warping

Overview

NeuralWarp: Improving neural implicit surfaces geometry with patch warping

Project page | Paper

Code release of paper Improving neural implicit surfaces geometry with patch warping
François Darmon, Bénédicte Bascle, Jean-Clément Devaux, Pascal Monasse and Mathieu Aubry

Installation

See requirements.txt for the python packages.

Data

Download data with ./download_dtu.sh and ./download_epfl.sh

Extract mesh from a pretrained model

Download the pretrained models with ./download_pretrained_models.sh then run the extraction script

python extract_mesh.py --conf CONF --scene SCENE [--OPTIONS]

  • CONF is the configuration file (e.g. confs/NeuralWarp_dtu.conf)
  • SCENE is the scan id for DTU data and either fountain or herzjesu for EPFL.
  • See python extract_mesh.py --help for a detailed explanation of the options. The evaluation in the papers are with default options for DTU and with --bbox_size 4 --no_one_cc --filter_visible_triangles --min_nb_visible 1 for EPFL.

The output mesh will be in evals/CONF_SCENE/ouptut_mesh.ply

You can also run the evaluation: first download the DTU evaluation data ./download_dtu_eval, then run the evaluation script python eval.py --scene SCENE. The evaluation metrics will be written in evals/CONF_SCENE/result.txt.

Train a model from scratch

First train a baseline model (i.e. VolSDF) python train.py --conf confs/baseline_DATASET --scene SCENE.

Then finetune using our method with python train.py --conf confs/NeuralWarp_DATASET --scene SCENE.

A visualization html file is generated for each training in exps/CONF_SCENE/TIMESTAMP/visu.html.

Acknowledgments

This repository is inspired by IDR

This work was supported in part by ANR project EnHerit ANR-17-CE23-0008 and was performed using HPC resources from GENCI–IDRIS 2021-AD011011756R1. We thank Tom Monnier for valuable feedback and Jingyang Zhang for sending MVSDF results.

Copyright

NeuralWarp All rights reseved to Thales LAS and ENPC.

This code is freely available for academic use only and Provided “as is” without any warranty.

Modification are allowed for academic research provided that the following conditions are met :
  * Redistributions of source code or any format must retain the above copyright notice and this list of conditions.
  * Neither the name of Thales LAS and ENPC nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.
Owner
François Darmon
PhD student in 3D computer vision at Imagine team ENPC and Thales LAS FRANCE
François Darmon
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
The code used for the free [email protected] Webinar series on Reinforcement Learning in Finance

Reinforcement Learning in Finance [email protected] Webinar This repository provides the code f

Yves Hilpisch 62 Dec 22, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
Matthew Colbrook 1 Apr 08, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Sample code from the Neural Networks from Scratch book.

Neural Networks from Scratch (NNFS) book code Code from the NNFS book (https://nnfs.io) separated by chapter.

Harrison 172 Dec 31, 2022
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
An Inverse Kinematics library aiming performance and modularity

IKPy Demo Live demos of what IKPy can do (click on the image below to see the video): Also, a presentation of IKPy: Presentation. Features With IKPy,

Pierre Manceron 481 Jan 02, 2023
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
An end-to-end machine learning web app to predict rugby scores (Pandas, SQLite, Keras, Flask, Docker)

Rugby score prediction An end-to-end machine learning web app to predict rugby scores Overview An demo project to provide a high-level overview of the

34 May 24, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
Addition of pseudotorsion caclulation eta, theta, eta', and theta' to barnaba package

Addition to Original Barnaba Code: This is modified version of Barnaba package to calculate RNA pseudotorsion angles eta, theta, eta', and theta'. Ple

Mandar Kulkarni 1 Jan 11, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023