Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

Overview

DreamerPro

Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2. A re-implementation of Temporal Predictive Coding for Model-Based Planning in Latent Space is also included.

DreamerPro makes large performance gains on the DeepMind Control suite both in the standard setting and when there are complex background distractions. This is achieved by combining Dreamer with prototypical representations that free the world model from reconstructing visual details.

Setup

Dependencies

First clone the repository, and then set up a conda environment with all required dependencies using the requirements.txt file:

git clone https://github.com/fdeng18/dreamer-pro.git
cd dreamer-pro
conda create --name dreamer-pro python=3.8 conda-forge::cudatoolkit conda-forge::cudnn
conda activate dreamer-pro
pip install --upgrade pip
pip install -r requirements.txt

DreamerPro has not been tested on Atari, but if you would like to try, the Atari ROMs can be imported by following these instructions.

Natural background videos

Our natural background setting follows TPC. For convenience, we have included their code to download the background videos. Simply run:

python download_videos.py

This will download the background videos into kinetics400/videos.

Training

DreamerPro

For standard DMC, run:

cd DreamerPro
python dreamerv2/train.py --logdir log/dmc_{task}/dreamer_pro/{run} --task dmc_{task} --configs defaults dmc norm_off

Here, {task} should be replaced by the actual task, and {run} should be assigned an integer indicating the independent runs of the same model on the same task. For example, to start the first run on walker_run:

cd DreamerPro
python dreamerv2/train.py --logdir log/dmc_walker_run/dreamer_pro/1 --task dmc_walker_run --configs defaults dmc norm_off

For natural background DMC, run:

cd DreamerPro
python dreamerv2/train.py --logdir log/nat_{task}/dreamer_pro/{run} --task nat_{task} --configs defaults dmc reward_1000

TPC

DreamerPro is based on a newer version of Dreamer. For fair comparison, we re-implement TPC based on the same version. Our re-implementation obtains better results in the natural background setting than reported in the original TPC paper.

For standard DMC, run:

cd TPC
python dreamerv2/train.py --logdir log/dmc_{task}/tpc/{run} --task dmc_{task} --configs defaults dmc

For natural background DMC, run:

cd TPC
python dreamerv2/train.py --logdir log/nat_{task}/tpc/{run} --task nat_{task} --configs defaults dmc reward_1000

Dreamer

For standard DMC, run:

cd Dreamer
python dreamerv2/train.py --logdir log/dmc_{task}/dreamer/{run} --task dmc_{task} --configs defaults dmc

For natural background DMC, run:

cd Dreamer
python dreamerv2/train.py --logdir log/nat_{task}/dreamer/{run} --task nat_{task} --configs defaults dmc reward_1000 --precision 32

We find it necessary to use --precision 32 in the natural background setting for numerical stability.

Outputs

The training process can be monitored via TensorBoard. We have also included performance curves in plots. Note that these curves may appear different from what is shown in TensorBoard. This is because the evaluation return in the performance curves is averaged over 10 episodes, while TensorBoard only shows the evaluation return of the last episode.

Acknowledgments

This repository is largely based on the TensorFlow 2 implementation of Dreamer. We would like to thank Danijar Hafner for releasing and updating his clean implementation. In addition, we also greatly appreciate the help from Tung Nguyen in implementing TPC.

Crosslingual Segmental Language Model

Crosslingual Segmental Language Model This repository contains the code from Multilingual unsupervised sequence segmentation transfers to extremely lo

C.M. Downey 1 Jun 13, 2022
Code repository accompanying the paper "On Adversarial Robustness: A Neural Architecture Search perspective"

On Adversarial Robustness: A Neural Architecture Search perspective Preparation: Clone the repository: https://github.com/tdchaitanya/nas-robustness.g

Chaitanya Devaguptapu 4 Nov 10, 2022
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Potato Disease Classification - Training, Rest APIs, and Frontend to test.

Potato Disease Classification Setup for Python: Install Python (Setup instructions) Install Python packages pip3 install -r training/requirements.txt

codebasics 95 Dec 21, 2022
A deep-learning pipeline for segmentation of ambiguous microscopic images.

Welcome to Official repository of deepflash2 - a deep-learning pipeline for segmentation of ambiguous microscopic images. Quick Start in 30 seconds se

Matthias Griebel 39 Dec 19, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
image scene graph generation benchmark

Scene Graph Benchmark in PyTorch 1.7 This project is based on maskrcnn-benchmark Highlights Upgrad to pytorch 1.7 Multi-GPU training and inference Bat

Microsoft 303 Dec 27, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
A Lightweight Hyperparameter Optimization Tool 🚀

Lightweight Hyperparameter Optimization 🚀 The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machin

136 Jan 08, 2023
Spline is a tool that is capable of running locally as well as part of well known pipelines like Jenkins (Jenkinsfile), Travis CI (.travis.yml) or similar ones.

Welcome to spline - the pipeline tool Important note: Since change in my job I didn't had the chance to continue on this project. My main new project

Thomas Lehmann 29 Aug 22, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation

OoD_Gen-Chest_Xray Out-of-Distribution Generalization of Chest X-ray Using Risk Extrapolation Requirements (Installations) Install the following libra

Enoch Tetteh 2 Oct 01, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
PyTorch implementation for 3D human pose estimation

Towards 3D Human Pose Estimation in the Wild: a Weakly-supervised Approach This repository is the PyTorch implementation for the network presented in:

Xingyi Zhou 579 Dec 22, 2022