Registration Loss Learning for Deep Probabilistic Point Set Registration

Related tags

Deep LearningRLLReg
Overview

RLLReg

This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV 2020 paper "Registration Loss Learning for Deep Probabilistic Point Set Registration".

ArXiv: [paper]

If you find the code useful, please cite using

@InProceedings{Lawin_2020_3DV,
    author = {Felix J\"aremo Lawin and Per-Erik Forss\'en},
    title = {Registration Loss Learning for Deep Probabilistic Point Set Registration},
    booktitle = {{IEEE/CVF} International Virtual Conference on 3D Vision ({3DV})},
    month = {November},
    year = {2020}} 

Installation

  • Clone the repository: git clone https://github.com/felja633/RLLReg.git
  • Create a conda environment and install the following dependencies:
conda create -n rllreg python=3.7
conda activate rllreg
conda install -y numpy pathlib mkl-include pyyaml
conda install -y pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
conda install -y -c conda-forge cudatoolkit-dev
pip install easydict visdom
pip install git+https://github.com/jonbarron/robust_loss_pytorch
conda install -y -c open3d-admin open3d
git clone https://github.com/NVIDIA/MinkowskiEngine.git
cd MinkowskiEngine
python setup.py install --cuda_home=/path/to/conda/rllreg 
pip install torch-scatter==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-sparse==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-cluster==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-spline-conv==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-geometric

Datasets

Kitti

Download and unpack Velodyne scans from http://www.cvlibs.net/download.php?file=data_odometry_velodyne.zip

3DMatch

Download RGB-D scenes from http://3dmatch.cs.princeton.edu/ using http://vision.princeton.edu/projects/2016/3DMatch/downloads/rgbd-datasets/download.sh and unpack the file. Download train.txt and test.txt. These contain the official train/test splits which can be found in the file https://vision.princeton.edu/projects/2016/3DMatch/downloads/rgbd-datasets/split.txt. Place these text files in the 3DMatch dataset folder.

Configuration

Set up your local environment by setting the correct paths for your system in config.py. Here you should set the paths to the datasets and pre-trained models.

Models

The following pre-trained models are available for download:

Name Training set Weights
RLLReg_threedmatch.pth 3DMatch download
RLLReg_threedmatch_multi.pth 3DMatch download
RLLReg_kitti.pth Kitti download
RLLReg_kitti_multi.pth Kitti download

For the version trained with contrastive loss, use the following models from https://github.com/chrischoy/FCGF

Name Training set Weights
2019-08-16_19-21-47.pth 3DMatch download
KITTI-v0.3-ResUNetBN2C-conv1-5-nout16.pth Kitti download

To further enable comparisons to DGR, download the weights for 3DMatch and Kitti.

Place all pre-trained weights in the same folder and set pretrained_networks to the path of that folder in config.py.

Running evaluations

Scripts for evaluation are available at experiments/. For an evaluation of pairwise registration as described in the paper run:

python experiments/evaluation_kitti.py

Training

Scripts for training are available at experiments/. If you want to train RLLReg for pairwise registration run:

python experiments/train_rll_kitti.py

Additional implementations

This repository also includes a pytorch version of Density Adaptive Point Set Registration (DARE) and Joint Registration of Multiple Point Clouds (JRMPC). Further, models/feature_reg_model_fcgf_fppsr.py and models/feature_reg_model_fpfh_fppsr.py contain pytorch implementations of FPPSR using FCGF and FPFH features respectively.

Under external/DeepGLobalRegistration the official implementation of DGR is located. The code is copied from the original repository but it is modified to use relative paths.

Contact

Felix Järemo Lawin

email: [email protected]

Acknowledgements

Special thanks go to Shivangi Srivastava who helped with initial implementations of the work!

Owner
Felix Järemo Lawin
Felix Järemo Lawin
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Simple sinc interpolation in PyTorch.

Kazane: simple sinc interpolation for 1D signal in PyTorch Kazane utilize FFT based convolution to provide fast sinc interpolation for 1D signal when

Chin-Yun Yu 10 May 03, 2022
Public repository created to store my custom-made tools for Just Dance (UbiArt Engine)

Woody's Just Dance Tools Public repository created to store my custom-made tools for Just Dance (UbiArt Engine) Development and updates Almost all of

Wodson de Andrade 8 Dec 24, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
Code for Discriminative Sounding Objects Localization (NeurIPS 2020)

Discriminative Sounding Objects Localization Code for our NeurIPS 2020 paper Discriminative Sounding Objects Localization via Self-supervised Audiovis

51 Dec 11, 2022
This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge column damage detection

Bridge-damage-segmentation This is the code repository for the paper A hierarchical semantic segmentation framework for computer-vision-based bridge c

Jingxiao Liu 5 Dec 07, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
A state-of-the-art semi-supervised method for image recognition

Mean teachers are better role models Paper ---- NIPS 2017 poster ---- NIPS 2017 spotlight slides ---- Blog post By Antti Tarvainen, Harri Valpola (The

Curious AI 1.4k Jan 06, 2023
Resco: A simple python package that report the effect of deep residual learning

resco Description resco is a simple python package that report the effect of dee

Pierre-Arthur Claudé 1 Jun 28, 2022
Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES)

Non-Imaging Transient Reconstruction And TEmporal Search (NITRATES) This repo contains the full NITRATES pipeline for maximum likelihood-driven discov

13 Nov 08, 2022
An automated facial recognition based attendance system (desktop application)

Facial_Recognition_based_Attendance_System An automated facial recognition based attendance system (desktop application) Made using Python, Tkinter an

1 Jun 21, 2022
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
The project page of paper: Architecture disentanglement for deep neural networks [ICCV 2021, oral]

This is the project page for the paper: Architecture Disentanglement for Deep Neural Networks, Jie Hu, Liujuan Cao, Tong Tong, Ye Qixiang, ShengChuan

Jie Hu 15 Aug 30, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022