fastai ulmfit - Pretraining the Language Model, Fine-Tuning and training a Classifier

Overview

fast.ai ULMFiT with SentencePiece from pretraining to deployment

Motivation: Why even bother with a non-BERT / Transformer language model? Short answer: you can train a state of the art text classifier with ULMFiT with limited data and affordable hardware. The whole process (preparing the Wikipedia dump, pretrain the language model, fine tune the language model and training the classifier) takes about 5 hours on my workstation with a RTX 3090. The training of the model with FP16 requires less than 8 GB VRAM - so you can train the model on affordable GPUs.

I also saw this paper on the roadmap for fast.ai 2.3 Single Headed Attention RNN: Stop Thinking With Your Head which could improve the performance further.

This Repo is based on:

Pretrained models

Language (local) code Perplexity Vocab Size Tokenizer Download (.tgz files)
German Deutsch de 16.1 15k SP https://bit.ly/ulmfit-dewiki
German Deutsch de 18.5 30k SP https://bit.ly/ulmfit-dewiki-30k
Dutch Nederlands nl 20.5 15k SP https://bit.ly/ulmfit-nlwiki
Russian Русский ru 29.8 15k SP https://bit.ly/ulmfit-ruwiki
Portuguese Português pt 17.3 15k SP https://bit.ly/ulmfit-ptwiki
Vietnamese Tiếng Việt vi 18.8 15k SP https://bit.ly/ulmfit-viwiki
Japanese 日本語 ja 42.6 15k SP https://bit.ly/ulmfit-jawiki
Italian Italiano it 23.7 15k SP https://bit.ly/ulmfit-itwiki
Spanish Español es 21.9 15k SP https://bit.ly/ulmfit-eswiki
Korean 한국어 ko 39.6 15k SP https://bit.ly/ulmfit-kowiki
Thai ไทย th 56.4 15k SP https://bit.ly/ulmfit-thwiki
Hebrew עברית he 46.3 15k SP https://bit.ly/ulmfit-hewiki
Arabic العربية ar 50.0 15k SP https://bit.ly/ulmfit-arwiki
Mongolian Монгол mn see: Github: RobertRitz

Download with wget

# to preserve the filenames (.tgz!) when downloading with wget use --content-disposition
wget --content-disposition https://bit.ly/ulmfit-dewiki 

Usage of pretrained models - library fastai_ulmfit.pretrained

I've written a small library around this repo, to easily use the pretrained models. You don't have to bother with model, vocab and tokenizer files and paths - the following functions will take care of that.

Tutorial: fastai_ulmfit_pretrained_usage.ipynb Open In Colab

Installation

pip install fastai-ulmfit

Usage

# import
from fastai_ulmfit.pretrained import *

url = 'http://bit.ly/ulmfit-dewiki'

# get tokenizer - if pretrained=True, the SentencePiece Model used for language model pretraining will be used. Default: False 
tok = tokenizer_from_pretrained(url, pretrained=False)

# get language model learner for fine-tuning
learn = language_model_from_pretrained(dls, url=url, drop_mult=0.5).to_fp16()

# save fine-tuned model for classification
path = learn.save_lm('tmp/test_lm')

# get text classifier learner from fine-tuned model
learn = text_classifier_from_lm(dls, path=path, metrics=[accuracy]).to_fp16()

Extract Sentence Embeddings

from fastai_ulmfit.embeddings import SentenceEmbeddingCallback

se = SentenceEmbeddingCallback(pool_mode='concat')
_ = learn.get_preds(cbs=[se])

feat = se.feat
pca = PCA(n_components=2)
pca.fit(feat['vec'])
coords = pca.transform(feat['vec'])

Model pretraining

Setup

Python environment

fastai-2.2.7
fastcore-1.3.19
sentencepiece-0.1.95
fastinference-0.0.36

Install packages pip install -r requirements.txt

The trained language models are compatible with other fastai versions!

Docker

The Wikipedia-dump preprocessing requires docker https://docs.docker.com/get-docker/.

Project structure

.
├── we                         Docker image for the preperation of the Wikipedia-dump / wikiextractor
└── data          
    └── {language-code}wiki         
        ├── dump                    downloaded Wikipedia dump
        │   └── extract             extracted wikipedia-articles using wikiextractor
        ├── docs 
        │   ├── all                 all extracted Wikipedia articles as single txt-files
        │   ├── sampled             sampled Wikipedia articles for language model pretraining
        │   └── sampled_tok         cached tokenized sampled articles - created by fastai / sentencepiece
        └── model 
            ├── lm                  language model trained in step 2
            │   ├── fwd             forward model
            │   ├── bwd             backwards model
            │   └── spm             SentencePiece model
            │
            ├── ft                  fine tuned model trained in step 3
            │   ├── fwd             forward model
            │   ├── bwd             backwards model
            │   └── spm             SentencePiece model
            │
            └── class               classifier trained in step 4
                ├── fwd             forward learner
                └── bwd             backwards learner

1. Prepare Wikipedia-dump for pretraining

ULMFiT can be peretrained on relativly small datasets - 100 million tokens are sufficient to get state-of-the art classification results (compared to Transformer models as BERT, which need huge amounts of training data). The easiest way is to pretrain a language model on Wikipedia.

The code for the preperation steps is heavily inspired by / copied from the fast.ai NLP-course: https://github.com/fastai/course-nlp/blob/master/nlputils.py

I built a docker container and script, that automates the following steps:

  1. Download Wikipedia XML-dump
  2. Extract the text from the dump
  3. Sample 160.000 documents with a minimum length of 1800 characters (results in 100m-120m tokens) both parameters can be changed - see the usage below

The whole process will take some time depending on the download speed and your hardware. For the 'dewiki' the preperation took about 45 min.

Run the following commands in the current directory

# build the wikiextractor docker file
docker build -t wikiextractor ./we

# run the docker container for a specific language
# docker run -v $(pwd)/data:/data -it wikiextractor -l <language-code> 
# for German language-code de run:
docker run -v $(pwd)/data:/data -it wikiextractor -l de
...
sucessfully prepared dewiki - /data/dewiki/docs/sampled, number of docs 160000/160000 with 110699119 words / tokens!

# To change the number of sampled documents or the minimum length see
usage: preprocess.py [-h] -l LANG [-n NUMBER_DOCS] [-m MIN_DOC_LENGTH] [--mirror MIRROR] [--cleanup]

# To cleanup indermediate files (wikiextractor and all splitted documents) run the following command. 
# The Wikipedia-XML-Dump and the sampled docs will not be deleted!
docker run -v $(pwd)/data:/data -it wikiextractor -l <language-code> --cleanup

2. Language model pretraining on Wikipedia Dump

Notebook: 2_ulmfit_lm_pretraining.ipynb

To get the best result, you can train two seperate language models - a forward and a backward model. You'll have to run the complete notebook twice and set the backwards parameter accordingly. The models will be saved in seperate folders (fwd / bwd). The same applies to fine-tuning and training of the classifier.

Parameters

Change the following parameters according to your needs:

lang = 'de' # language of the Wikipedia-Dump
backwards = False # Train backwards model? Default: False for forward model
bs=128 # batch size
vocab_sz = 15000 # vocab size - 15k / 30k work fine with sentence piece
num_workers=18 # num_workers for the dataloaders
step = 'lm' # language model - don't change

Training Logs + config

model.json contains the parameters the language model was trained with and the statistics (looses and metrics) of the last epoch

{
    "lang": "de",
    "step": "lm",
    "backwards": false,
    "batch_size": 128,
    "vocab_size": 15000,
    "lr": 0.01,
    "num_epochs": 10,
    "drop_mult": 0.5,
    "stats": {
        "train_loss": 2.894167184829712,
        "valid_loss": 2.7784812450408936,
        "accuracy": 0.46221256256103516,
        "perplexity": 16.094558715820312
    }
}

history.csv log of the training metrics (epochs, losses, accuracy, perplexity)

epoch,train_loss,valid_loss,accuracy,perplexity,time
0,3.375441551208496,3.369227886199951,0.3934227228164673,29.05608367919922,23:00
...
9,2.894167184829712,2.7784812450408936,0.46221256256103516,16.094558715820312,22:44

3. Language model fine-tuning on unlabled data

Notebook: 3_ulmfit_lm_finetuning.ipynb

To improve the performance on the downstream-task, the language model should be fine-tuned. We are using a Twitter dataset (GermEval2018/2019), so we fine-tune the LM on unlabled tweets.

To use the notebook on your own dataset, create a .csv-file containing your (unlabled) data in the text column.

Files required from the Language Model (previous step):

  • Model (*model.pth)
  • Vocab (*vocab.pkl)

I am not reusing the SentencePiece-Model from the language model! This could lead to slightly different tokenization but fast.ai (-> language_model_learner()) and the fine-tuning takes care of adding and training unknown tokens! This approch gave slightly better results than reusing the SP-Model from the language model.

4. Train the classifier

Notebook: 4_ulmfit_train_classifier.ipynb

The (fine-tuned) language model now can be used to train a classifier on a (small) labled dataset.

To use the notebook on your own dataset, create a .csv-file containing your texts in the text and labels in the label column.

Files required from the fine-tuned LM (previous step):

  • Encoder (*encoder.pth)
  • Vocab (*vocab.pkl)
  • SentencePiece-Model (spm/spm.model)

5. Use the classifier for predictions / inference on new data

Notebook: 5_ulmfit_inference.ipynb

Evaluation

German pretrained model

Results with an ensemble of forward + backward model (see the inference notebook). Neither the fine-tuning of the LM, nor the training of the classifier was optimized - so there is still room for improvement.

Official results: https://ids-pub.bsz-bw.de/frontdoor/deliver/index/docId/9319/file/Struss_etal._Overview_of_GermEval_task_2_2019.pdf

Task 1 Coarse Classification

Classes: OTHER, OFFENSE

Accuracy: 79,68 F1: 75,96 (best BERT 76,95)

Task 2 Fine Classification

Classes: OTHER, PROFANITY, INSULT, ABUSE

Accuracy: 74,56 % F1: 52,54 (best BERT 53.59)

Dutch model

Compared result with: https://arxiv.org/pdf/1912.09582.pdf
Dataset https://github.com/benjaminvdb/DBRD

Accuracy 93,97 % (best BERT 93,0 %)

Japanese model

Copared results with:

Livedoor news corpus
Accuracy 97,1% (best BERT ~98 %)

Korean model

Compared with: https://github.com/namdori61/BERT-Korean-Classification Dataset: https://github.com/e9t/nsmc Accuracy 89,6 % (best BERT 90,1 %)

Deployment as REST-API

see https://github.com/floleuerer/fastai-docker-deploy

.

Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

Tao Lei 14 Dec 12, 2022
ElasticBERT: A pre-trained model with multi-exit transformer architecture.

This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
Local cross-platform machine translation GUI, based on CTranslate2

DesktopTranslator Local cross-platform machine translation GUI, based on CTranslate2 Download Windows Installer You can either download a ready-made W

Yasmin Moslem 29 Jan 05, 2023
CYGNUS, the Cynical AI, combines snarky responses with uncanny aggression.

New & (hopefully) Improved CYGNUS with several API updates, user updates, and online/offline operations added!!!

Simran Farrukh 0 Mar 28, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents

Language Models as Zero-Shot Planners: Extracting Actionable Knowledge for Embodied Agents [Project Page] [Paper] [Video] Wenlong Huang1, Pieter Abbee

Wenlong Huang 114 Dec 29, 2022
"Investigating the Limitations of Transformers with Simple Arithmetic Tasks", 2021

transformers-arithmetic This repository contains the code to reproduce the experiments from the paper: Nogueira, Jiang, Lin "Investigating the Limitat

Castorini 33 Nov 16, 2022
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。

SimpleChinese2 SimpleChinese2 集成了许多基本的中文NLP功能,使基于 Python 的中文文字处理和信息提取变得简单方便。 声明 本项目是为方便个人工作所创建的,仅有部分代码原创。

Ming 30 Dec 02, 2022
Package for controllable summarization

summarizers summarizers is package for controllable summarization based CTRLsum. currently, we only supports English. It doesn't work in other languag

Hyunwoong Ko 72 Dec 07, 2022
中文空间语义理解评测

中文空间语义理解评测 最新消息 2021-04-10 🚩 排行榜发布: Leaderboard 2021-04-05 基线系统发布: SpaCE2021-Baseline 2021-04-05 开放数据提交: 提交结果 2021-04-01 开放报名: 我要报名 2021-04-01 数据集 pa

40 Jan 04, 2023
Question answering app is used to answer for a user given question from user given text.

Question answering app is used to answer for a user given question from user given text.It is created using HuggingFace's transformer pipeline and streamlit python packages.

Siva Prakash 3 Apr 05, 2022
Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Code for "Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments".

Yu Zhang 50 Nov 08, 2022
BERT, LDA, and TFIDF based keyword extraction in Python

BERT, LDA, and TFIDF based keyword extraction in Python kwx is a toolkit for multilingual keyword extraction based on Google's BERT and Latent Dirichl

Andrew Tavis McAllister 41 Dec 27, 2022
An IVR Chatbot which can exponentially reduce the burden of companies as well as can improve the consumer/end user experience.

IVR-Chatbot Achievements 🏆 Team Uhtred won the Maverick 2.0 Bot-a-thon 2021 organized by AbInbev India. ❓ Problem Statement As we all know that, lot

ARYAMAAN PANDEY 9 Dec 08, 2022
Code for EMNLP20 paper: "ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training"

ProphetNet-X This repo provides the code for reproducing the experiments in ProphetNet. In the paper, we propose a new pre-trained language model call

Microsoft 394 Dec 17, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
Generating Korean Slogans with phonetic and structural repetition

LexPOS_ko Generating Korean Slogans with phonetic and structural repetition Generating Slogans with Linguistic Features LexPOS is a sequence-to-sequen

Yeoun Yi 3 May 23, 2022
中文医疗信息处理基准CBLUE: A Chinese Biomedical LanguageUnderstanding Evaluation Benchmark

English | 中文说明 CBLUE AI (Artificial Intelligence) is playing an indispensabe role in the biomedical field, helping improve medical technology. For fur

452 Dec 30, 2022