Papers about explainability of GNNs

Overview

awesome-graph-explainability-papers

Papers about explainability of GNNs

Most Influential Cogdl

  1. Explainability in graph neural networks: A taxonomic survey. Yuan Hao, Yu Haiyang, Gui Shurui, Ji Shuiwang. ARXIV 2020. paper
  2. Gnnexplainer: Generating explanations for graph neural networks. Ying Rex, Bourgeois Dylan, You Jiaxuan, Zitnik Marinka, Leskovec Jure. NeurIPS 2019. paper code
  3. Explainability methods for graph convolutional neural networks. Pope Phillip E, Kolouri Soheil, Rostami Mohammad, Martin Charles E, Hoffmann Heiko. CVPR 2019.paper
  4. Parameterized Explainer for Graph Neural Network. Luo Dongsheng, Cheng Wei, Xu Dongkuan, Yu Wenchao, Zong Bo, Chen Haifeng, Zhang Xiang. NeurIPS 2020. paper code
  5. Xgnn: Towards model-level explanations of graph neural networks. Yuan Hao, Tang Jiliang, Hu Xia, Ji Shuiwang. KDD 2020. paper.
  6. Evaluating Attribution for Graph Neural Networks. Sanchez-Lengeling Benjamin, Wei Jennifer, Lee Brian, Reif Emily, Wang Peter, Qian Wesley, McCloskey Kevin, Colwell Lucy, Wiltschko Alexander. NeurIPS 2020.paper
  7. PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks. Vu Minh, Thai My T.. NeurIPS 2020.paper
  8. Explanation-based Weakly-supervised Learning of Visual Relations with Graph Networks. Federico Baldassarre and Kevin Smith and Josephine Sullivan and Hossein Azizpour. ECCV 2020.paper
  9. GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media. Lu, Yi-Ju and Li, Cheng-Te. ACL 2020.paper
  10. On Explainability of Graph Neural Networks via Subgraph Explorations. Yuan Hao, Yu Haiyang, Wang Jie, Li Kang, Ji Shuiwang. ICML 2021.paper

Recent SOTA

  1. Quantifying Explainers of Graph Neural Networks in Computational Pathology. Jaume Guillaume, Pati Pushpak, Bozorgtabar Behzad, Foncubierta Antonio, Anniciello Anna Maria, Feroce Florinda, Rau Tilman, Thiran Jean-Philippe, Gabrani Maria, Goksel Orcun. Proceedings of the IEEECVF Conference on Computer Vision and Pattern Recognition CVPR 2021.paper
  2. Counterfactual Supporting Facts Extraction for Explainable Medical Record Based Diagnosis with Graph Network. Wu Haoran, Chen Wei, Xu Shuang, Xu Bo. NAACL 2021. paper
  3. When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods. Faber Lukas, K. Moghaddam Amin, Wattenhofer Roger. KDD 2021. paper
  4. Counterfactual Graphs for Explainable Classification of Brain Networks. Abrate Carlo, Bonchi Francesco. Proceedings of the th ACM SIGKDD Conference on Knowledge Discovery Data Mining KDD 2021. paper
  5. Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs. Zhen Han, Peng Chen, Yunpu Ma, Volker Tresp. International Conference on Learning Representations ICLR 2021.paper
  6. Generative Causal Explanations for Graph Neural Networks. Lin Wanyu, Lan Hao, Li Baochun. Proceedings of the th International Conference on Machine Learning ICML 2021.paper
  7. Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity. Henderson Ryan, Clevert Djork-Arné, Montanari Floriane. Proceedings of the th International Conference on Machine Learning ICML 2021.paper
  8. Explainable Automated Graph Representation Learning with Hyperparameter Importance. Wang Xin, Fan Shuyi, Kuang Kun, Zhu Wenwu. Proceedings of the th International Conference on Machine Learning ICML 2021.paper
  9. Higher-order explanations of graph neural networks via relevant walks. Schnake Thomas, Eberle Oliver, Lederer Jonas, Nakajima Shinichi, Schütt Kristof T, Müller Klaus-Robert, Montavon Grégoire. arXiv preprint arXiv:2006.03589 2020. paper
  10. HENIN: Learning Heterogeneous Neural Interaction Networks for Explainable Cyberbullying Detection on Social Media. Chen, Hsin-Yu and Li, Cheng-Te. EMNLP 2020. paper

Year 2022

  1. [AAAI22] ProtGNN: Towards Self-Explaining Graph Neural Networks [paper]

Year 2021

  1. [Arxiv 21] Combining Sub-Symbolic and Symbolic Methods for Explainability [paper]
  2. [PAKDD 21] SCARLET: Explainable Attention based Graph Neural Network for Fake News spreader prediction [paper]
  3. [J. Chem. Inf. Model] Coloring Molecules with Explainable Artificial Intelligence for Preclinical Relevance Assessment [paper]
  4. [BioRxiv 21] APRILE: Exploring the Molecular Mechanisms of Drug Side Effects with Explainable Graph Neural Networks [paper]
  5. [ISM 21] Edge-Level Explanations for Graph Neural Networks by Extending Explainability Methods for Convolutional Neural Networks [paper]
  6. [TPAMI 21] Higher-Order Explanations of Graph Neural Networks via Relevant Walks [paper]
  7. [OpenReview 21] FlowX: Towards Explainable Graph Neural Networks via Message Flows [paper]
  8. [OpenReview 21] Task-Agnostic Graph Neural Explanations [paper]
  9. [OpenReview 21] Deconfounding to Explanation Evaluation in Graph Neural Networks [paper]
  10. [OpenReview 21] DEGREE: Decomposition Based Explanation for Graph Neural Networks [paper]
  11. [OpenReview 21] Discovering Invariant Rationales for Graph Neural Networks [paper]
  12. [OpenReview 21] Interpreting Graph Neural Networks via Unrevealed Causal Learning [paper]
  13. [OpenReview 21] Explainable GNN-Based Models over Knowledge Graphs [paper]
  14. [NeurIPS 2021] Reinforcement Learning Enhanced Explainer for Graph Neural Networks [paper]
  15. [NeurIPS 2021] Towards Multi-Grained Explainability for Graph Neural Networks [paper]
  16. [NeurIPS 2021] Robust Counterfactual Explanations on Graph Neural Networks [paper]
  17. [CVPR 2021] Quantifying Explainers of Graph Neural Networks in Computational Pathology.[paper]
  18. [NAACL 2021] Counterfactual Supporting Facts Extraction for Explainable Medical Record Based Diagnosis with Graph Network. [paper]
  19. [Arxiv 21] A Meta-Learning Approach for Training Explainable Graph Neural Network [paper]
  20. [Arxiv 21] Jointly Attacking Graph Neural Network and its Explanations [paper]
  21. [Arxiv 21] Towards a Rigorous Theoretical Analysis and Evaluation of GNN Explanations [paper]
  22. [Arxiv 21] SEEN: Sharpening Explanations for Graph Neural Networks using Explanations from Neighborhoods [paper]
  23. [Arxiv 21] Zorro: Valid, Sparse, and Stable Explanations in Graph Neural Networks [paper]
  24. [Arxiv 21] Preserve, Promote, or Attack? GNN Explanation via Topology Perturbation [paper]
  25. [Arxiv 21] Learnt Sparsification for Interpretable Graph Neural Networks [paper]
  26. [Arxiv 21] Efficient and Interpretable Robot Manipulation with Graph Neural Networks [paper]
  27. [Arxiv 21] IA-GCN: Interpretable Attention based Graph Convolutional Network for Disease prediction [paper]
  28. [ICML 2021] On Explainability of Graph Neural Networks via Subgraph Explorations[paper]
  29. [ICML 2021] Generative Causal Explanations for Graph Neural Networks[paper]
  30. [ICML 2021] Improving Molecular Graph Neural Network Explainability with Orthonormalization and Induced Sparsity[paper]
  31. [ICML 2021] Automated Graph Representation Learning with Hyperparameter Importance Explanation[paper]
  32. [ICML workshop 21] GCExplainer: Human-in-the-Loop Concept-based Explanations for Graph Neural Networks [paper]
  33. [ICML workshop 21] BrainNNExplainer: An Interpretable Graph Neural Network Framework for Brain Network based Disease Analysis [paper]
  34. [ICML workshop 21] Reliable Graph Neural Network Explanations Through Adversarial Training [paper]
  35. [ICML workshop 21] Reimagining GNN Explanations with ideas from Tabular Data [paper]
  36. [ICML workshop 21] Towards Automated Evaluation of Explanations in Graph Neural Networks [paper]
  37. [ICML workshop 21] Quantitative Evaluation of Explainable Graph Neural Networks for Molecular Property Prediction [paper]
  38. [ICML workshop 21] SALKG: Learning From Knowledge Graph Explanations for Commonsense Reasoning [paper]
  39. [ICLR 2021] Interpreting Graph Neural Networks for NLP With Differentiable Edge Masking[paper]
  40. [ICLR 2021] Graph Information Bottleneck for Subgraph Recognition [paper]
  41. [KDD 2021] When Comparing to Ground Truth is Wrong: On Evaluating GNN Explanation Methods[paper]
  42. [KDD 2021] Counterfactual Graphs for Explainable Classification of Brain Networks [paper]
  43. [AAAI 2021] Motif-Driven Contrastive Learning of Graph Representations [paper]
  44. [WWW 2021] Interpreting and Unifying Graph Neural Networks with An Optimization Framework [paper]
  45. [ICDM 2021] GNES: Learning to Explain Graph Neural Networks [paper]
  46. [ICDM 2021] GCN-SE: Attention as Explainability for Node Classification in Dynamic Graphs [paper]
  47. [ICDM 2021] Multi-objective Explanations of GNN Predictions
  48. [CIKM 2021] Towards Self-Explainable Graph Neural Network [paper]
  49. [ECML PKDD 2021] GraphSVX: Shapley Value Explanations for Graph Neural Networks [paper]
  50. [WiseML 2021] Explainability-based Backdoor Attacks Against Graph Neural Networks [paper]
  51. [IJCNN 21] MEG: Generating Molecular Counterfactual Explanations for Deep Graph Networks [paper]
  52. [KDD workshop 21] CF-GNNExplainer: Counterfactual Explanations for Graph Neural Networks [paper]
  53. [ICCSA 2021] Understanding Drug Abuse Social Network Using Weighted Graph Neural Networks Explainer [paper]
  54. [NeSy 21] A New Concept for Explaining Graph Neural Networks [paper]
  55. [Information Fusion 21] Towards multi-modal causability with Graph Neural Networks enabling information fusion for explainable AI [paper]
  56. [Patterns 21] hcga: Highly Comparative Graph Analysis for network phenotyping [paper]

Year 2020

  1. [NeurIPS 2020] Parameterized Explainer for Graph Neural Network.[paper]
  2. [NeurIPS 2020] PGM-Explainer: Probabilistic Graphical Model Explanations for Graph Neural Networks [paper]
  3. [KDD 2020] XGNN: Towards Model-Level Explanations of Graph Neural Networks [paper]
  4. [ACL 2020]GCAN: Graph-aware Co-Attention Networks for Explainable Fake News Detection on Social Media. paper
  5. [ICML workstop 2020] Contrastive Graph Neural Network Explanation [paper]
  6. [ICML workstop 2020] Towards Explainable Graph Representations in Digital Pathology [paper]
  7. [NeurIPS workshop 2020] Explaining Deep Graph Networks with Molecular Counterfactuals [paper]
  8. [[email protected] 2020] Exploring Graph-Based Neural Networks for Automatic Brain Tumor Segmentation" [paper]
  9. [Arxiv 2020] Graph Neural Networks Including Sparse Interpretability [paper]
  10. [OpenReview 20] A Framework For Differentiable Discovery Of Graph Algorithms [paper]
  11. [OpenReview 20] Causal Screening to Interpret Graph Neural Networks [paper]
  12. [Arxiv 20] xFraud: Explainable Fraud Transaction Detection on Heterogeneous Graphs [paper]
  13. [Arxiv 20] Explaining decisions of Graph Convolutional Neural Networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer [paper]
  14. [Arxiv 20] Understanding Graph Neural Networks from Graph Signal Denoising Perspectives [paper]
  15. [Arxiv 20] Understanding the Message Passing in Graph Neural Networks via Power Iteration [paper]
  16. [Arxiv 20] xERTE: Explainable Reasoning on Temporal Knowledge Graphs for Forecasting Future Links [paper]
  17. [IJCNN 20] GCN-LRP explanation: exploring latent attention of graph convolutional networks] [paper]
Owner
Dongsheng Luo
Ph.D. Student @ PSU
Dongsheng Luo
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
NeRD: Neural Reflectance Decomposition from Image Collections

NeRD: Neural Reflectance Decomposition from Image Collections Project Page | Video | Paper | Dataset Implementation for NeRD. A novel method which dec

Computergraphics (University of Tübingen) 195 Dec 29, 2022
Autotype on websites that have copy-paste disabled like Moodle, HackerEarth contest etc.

Autotype A quick and small python script that helps you autotype on websites that have copy paste disabled like Moodle, HackerEarth contests etc as it

Tushar 32 Nov 03, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
KIDA: Knowledge Inheritance in Data Aggregation

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

24 Sep 08, 2022
Official implementation of the ICCV 2021 paper: "The Power of Points for Modeling Humans in Clothing".

The Power of Points for Modeling Humans in Clothing (ICCV 2021) This repository contains the official PyTorch implementation of the ICCV 2021 paper: T

Qianli Ma 158 Nov 24, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
Implementation of "A MLP-like Architecture for Dense Prediction"

A MLP-like Architecture for Dense Prediction (arXiv) Updates (22/07/2021) Initial release. Model Zoo We provide CycleMLP models pretrained on ImageNet

Shoufa Chen 244 Dec 27, 2022
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

Aniket Maurya 210 Dec 21, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples

Source codes for Improved Few-Shot Visual Classification (CVPR 2020), Enhancing Few-Shot Image Classification with Unlabelled Examples (WACV 2022) and Beyond Simple Meta-Learning: Multi-Purpose Model

PLAI Group at UBC 42 Dec 06, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
Official implementation of the network presented in the paper "M4Depth: A motion-based approach for monocular depth estimation on video sequences"

M4Depth This is the reference TensorFlow implementation for training and testing depth estimation models using the method described in M4Depth: A moti

Michaël Fonder 76 Jan 03, 2023