A code generator from ONNX to PyTorch code

Overview

onnx-pytorch

Build Status

Generating pytorch code from ONNX. Currently support onnx==1.9.0 and torch==1.8.1.

Installation

  • From PyPI
pip install onnx-pytorch
  • From source
git clone https://github.com/fumihwh/onnx-pytorch.git
pip install -r requirements.txt
pip install -e .

Usage

from onnx_pytorch import code_gen
code_gen.gen("/path/to/onnx_model", "/path/to/output_dir")

A model.py file and variables folder will be created under output_dir.

Tutorial

  • Download resnet18 onnx model

wget https://github.com/onnx/models/raw/master/vision/classification/resnet/model/resnet18-v2-7.onnx

  • Use onnx-pytorch to generate pytorch code and variables.
from onnx_pytorch import code_gen
code_gen.gen("resnet18-v2-7.onnx", "./")
  • Test result
import numpy as np
import onnx
import onnxruntime
import torch
torch.set_printoptions(8)

from model import Model

model = Model()
model.eval()
inp = np.random.randn(1, 3, 224, 224).astype(np.float32)
with torch.no_grad():
  torch_outputs = model(torch.from_numpy(inp))

onnx_model = onnx.load("resnet18-v2-7.onnx")
sess_options = onnxruntime.SessionOptions()
session = onnxruntime.InferenceSession(onnx_model.SerializeToString(),
                                       sess_options)
inputs = {"data": inp}
ort_outputs = session.run(None, inputs)

print(
    "Comparison result:",
    np.allclose(torch_outputs.detach().numpy(),
                ort_outputs[0],
                atol=1e-5,
                rtol=1e-5))
Comments
  • latest version of onnx or torch fails pytest

    latest version of onnx or torch fails pytest

    latest version of onnx or torch fails pytest: pip install onnx onnxruntime --upgrade produces Successfully installed onnx-1.10.2 onnxruntime-1.9.0

    which fails the pipeline

    ================================================================================================================================== test session starts ===================================================================================================================================
    platform linux -- Python 3.9.7, pytest-6.2.5, py-1.11.0, pluggy-1.0.0
    rootdir: <me>/Documents/travail/programs/onnx-pytorch
    plugins: dash-2.0.0
    collected 88 items                                                                                                                                                                                                                                                                       
    
    onnx_pytorch/tests/test_base.py .F.................F..................s.................................................                                                                                                                                                           [100%]
    
    ======================================================================================================================================== FAILURES ========================================================================================================================================
    _________________________________________________________________________________________________________________ TestBase.test_conv_batchnorm_maxpool_flatten_add_relu __________________________________________________________________________________________________________________
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7fce8a666880>
    
        def test_conv_batchnorm_maxpool_flatten_add_relu(self):
          reset_model(13)
          nps = [np.random.randn(1, 3, 224, 224).astype(np.float32)]
          inputs = Input(*nps)
          conv_node = Conv(inputs[0],
                           np.random.randn(32, 3, 3, 3).astype(np.float32),
                           np.random.randn(32).astype(np.float32))
          bn_node = BatchNormalization(
              conv_node,
              np.ones(32,).astype(np.float32),
              np.zeros(32,).astype(np.float32),
              np.random.randn(32).astype(np.float32),
              np.abs(np.random.randn(32).astype(np.float32)),
          )
          max_pool_node = MaxPool(bn_node,
                                  kernel_shape=(3, 3),
                                  strides=(2, 2),
                                  pads=(0, 0, 1, 1))
          flatten_node = Flatten(max_pool_node, axis=1)
          add_node = Add(flatten_node, np.random.randn(1).astype(np.float32))
          relu_node = Relu(add_node)
          Output(relu_node)
    >     self._run(list(zip(inputs, nps)))
    
    onnx_pytorch/tests/test_base.py:103: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7fce8a666880>
    inputs_np = [('_t_Input_0', array([[[[ 1.0018734 , -0.62048906,  1.2765806 , ...,  0.25725722,
              -1.1847678 ,  1.8534303 ]...     [-0.86980325, -0.2758593 ,  0.05530448, ...,  0.2182875 ,
               0.33060816,  0.6260562 ]]]], dtype=float32))]
    
        def _run(self, inputs_np):
          inputs_np_dict = {k: v for k, v in inputs_np if k != ""}
          model = onnx.ModelProto()
          model.CopyFrom(omm.model)
          sess_options = onnxruntime.SessionOptions()
          session = onnxruntime.InferenceSession(model.SerializeToString(),
                                                 sess_options)
          ort_outputs = session.run(None, inputs_np_dict)
          model.graph.ClearField("value_info")
          initializers = {i.name: i for i in model.graph.initializer}
          for i in model.graph.input:
            if i.name in initializers:
              continue
            for idx, d in enumerate(i.type.tensor_type.shape.dim):
              if d.dim_param != "":
                d.ClearField("dim_param")
              d.dim_value = inputs_np_dict[i.name].shape[idx]
          try:
            model = SymbolicShapeInference.infer_shapes(model, 2**31 - 1, True, True,
                                                        1)
          except:
            logging.warning("Shape infer by onnxruntime failed.")
          with TemporaryDirectory() as tmpdir:
            clear_op_code_generator()
            model_code_generator = code_gen.get_model_code_generator(
                model,
                output_dir=tmpdir,
                tensor_inplace=True,
                simplify_names=True,
                shape_infer=False)
            model_code_generator.run()
            spec = importlib.util.spec_from_file_location(
                "model", os.path.join(tmpdir, "model.py"))
            mod = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(mod)
            pt_outputs = mod.test_run_model(
                [torch.from_numpy(v) for k, v in inputs_np if k != ""])
            if type(pt_outputs) == torch.Tensor:
              pt_outputs = [pt_outputs.detach().numpy()]
            elif type(pt_outputs) in (list, tuple):
              pt_outputs = [o.detach().numpy() for o in pt_outputs]
            for l, r in zip(ort_outputs, pt_outputs):
    >         assert np.allclose(l, r, atol=1e-4, rtol=1e-4, equal_nan=True)
    E         assert False
    E          +  where False = <function allclose at 0x7fcee3f60550>(array([[1.3416731 , 0.8318468 , 0.6191998 , ..., 1.1701062 , 0.6089205 ,\n        0.57694536]], dtype=float32), array([[10.049213 ,  6.957016 ,  5.667273 , ..., 10.965231 ,  7.2742968,\n         7.0639963]], dtype=float32), atol=0.0001, rtol=0.0001, equal_nan=True)
    E          +    where <function allclose at 0x7fcee3f60550> = np.allclose
    
    onnx_pytorch/tests/test_base.py:67: AssertionError
    ---------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ----------------------------------------------------------------------------------------------------------------------------------
    # Autogenerated by onnx-pytorch.
    
    import glob
    import os
    import math
    
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    
    
    class Model(nn.Module):
      def __init__(self):
        super(Model, self).__init__()
        self._vars = nn.ParameterDict()
        self._regularizer_params = []
        for b in glob.glob(
            os.path.join(os.path.dirname(__file__), "variables", "*.npy")):
          v = torch.from_numpy(np.load(b))
          requires_grad = v.dtype.is_floating_point or v.dtype.is_complex
          self._vars[os.path.basename(b)[:-4]] = nn.Parameter(v, requires_grad=requires_grad)
        self.n_Conv_0 = nn.Conv2d(**{'groups': 1, 'dilation': 1, 'out_channels': 32, 'padding': 0, 'kernel_size': (3, 3), 'stride': 1, 'in_channels': 3, 'bias': True})
        self.n_Conv_0.weight.data = self._vars["t_0"]
        self.n_Conv_0.bias.data = self._vars["t_1"]
        self.n_BatchNormalization_0 = nn.BatchNorm2d(**{'num_features': 32, 'eps': 9.999999747378752e-06, 'momentum': 0.8999999761581421})
        self.n_BatchNormalization_0.weight.data = self._vars["t_2"]
        self.n_BatchNormalization_0.bias.data = self._vars["t_3"]
        self.n_BatchNormalization_0.running_mean.data = self._vars["t_4"]
        self.n_BatchNormalization_0.running_var.data = self._vars["t_5"]
        self.n_MaxPool_0 = nn.MaxPool2d(**{'dilation': 1, 'kernel_size': [3, 3], 'ceil_mode': False, 'stride': [2, 2], 'return_indices': True})
        self.n_Flatten_0 = nn.Flatten(**{'start_dim': 1})
    
      def forward(self, *inputs):
        t_7, = inputs
        t_8 = self.n_Conv_0(t_7)
        t_9 = self.n_BatchNormalization_0(t_8)
        t_9 = F.pad(t_9, [0, 1, 0, 1], value=float('-inf'))
        t_14, t_15 = self.n_MaxPool_0(t_9)
        t_16 = self.n_Flatten_0(t_14)
        t_17 = torch.add(t_16, self._vars["t_6"])
        t_18 = F.relu(t_17)
        return t_18
    
      def compatible_auto_pad(self, input, kernel_spatial_shape, nn_mod, auto_pad=None, **kwargs):
        input_spatial_shape = input.shape[2:]
        d = len(input_spatial_shape)
        strides = nn_mod.stride
        dilations = nn_mod.dilation
        output_spatial_shape = [math.ceil(float(l) / float(r)) for l, r in zip(input.shape[2:], strides)]
        pt_padding = [0] * 2 * d
        pad_shape = [0] * d
        for i in range(d):
          pad_shape[i] = (output_spatial_shape[i] - 1) * strides[i] + ((kernel_spatial_shape[i] - 1) * dilations[i] + 1) - input_spatial_shape[i]
          mean = pad_shape[i] // 2
          if auto_pad == b"SAME_UPPER":
            l, r = pad_shape[i] - mean, mean
          else:
            l, r = mean, pad_shape[i] - mean
          pt_padding.insert(0, r)
          pt_padding.insert(0, l)
        return F.pad(input, pt_padding)
    
    @torch.no_grad()
    def test_run_model(inputs=[torch.from_numpy(np.random.randn(*[1, 3, 224, 224]).astype(np.float32))]):
      model = Model()
      model.eval()
      rs = model(*inputs)
      print(rs)
      return rs
    
    tensor([[10.04921341,  6.95701599,  5.66727304,  ..., 10.96523094,
              7.27429676,  7.06399632]])
    ----------------------------------------------------------------------------------------------------------------------------------- Captured log call ------------------------------------------------------------------------------------------------------------------------------------
    WARNING  root:__init__.py:41 Cannot get default value for dilations of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for kernel_shape of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for pads of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for strides of MaxPool.
    WARNING  root:MaxPool.py:47 MaxPool with asymmetric padding will get incorrect indices.
    ___________________________________________________________________________________________________________________________ TestBase.test_batch_normalization ____________________________________________________________________________________________________________________________
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7fce88ce44c0>
    
        def test_batch_normalization(self):
          reset_model(13)
          nps = [np.random.randn(1, 32, 3, 3).astype(np.float32)]
          inputs = Input(*nps)
          Output(BatchNormalization(
              inputs[0],
              np.ones(32,).astype(np.float32),
              np.zeros(32,).astype(np.float32),
              np.random.randn(32).astype(np.float32),
              np.abs(np.random.randn(32).astype(np.float32)),
          ),
                 output_num=1)
    >     self._run(list(zip(inputs, nps)))
    
    onnx_pytorch/tests/test_base.py:239: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7fce88ce44c0>
    inputs_np = [('_t_Input_0', array([[[[ 6.35267049e-02,  5.02886951e-01, -6.22651100e-01],
             [ 1.44260633e+00,  1.56048670e-...51401734e-01,  5.14413416e-01],
             [-1.90268409e+00, -7.60383308e-02,  2.99409509e-01]]]],
          dtype=float32))]
    
        def _run(self, inputs_np):
          inputs_np_dict = {k: v for k, v in inputs_np if k != ""}
          model = onnx.ModelProto()
          model.CopyFrom(omm.model)
          sess_options = onnxruntime.SessionOptions()
          session = onnxruntime.InferenceSession(model.SerializeToString(),
                                                 sess_options)
          ort_outputs = session.run(None, inputs_np_dict)
          model.graph.ClearField("value_info")
          initializers = {i.name: i for i in model.graph.initializer}
          for i in model.graph.input:
            if i.name in initializers:
              continue
            for idx, d in enumerate(i.type.tensor_type.shape.dim):
              if d.dim_param != "":
                d.ClearField("dim_param")
              d.dim_value = inputs_np_dict[i.name].shape[idx]
          try:
            model = SymbolicShapeInference.infer_shapes(model, 2**31 - 1, True, True,
                                                        1)
          except:
            logging.warning("Shape infer by onnxruntime failed.")
          with TemporaryDirectory() as tmpdir:
            clear_op_code_generator()
            model_code_generator = code_gen.get_model_code_generator(
                model,
                output_dir=tmpdir,
                tensor_inplace=True,
                simplify_names=True,
                shape_infer=False)
            model_code_generator.run()
            spec = importlib.util.spec_from_file_location(
                "model", os.path.join(tmpdir, "model.py"))
            mod = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(mod)
            pt_outputs = mod.test_run_model(
                [torch.from_numpy(v) for k, v in inputs_np if k != ""])
            if type(pt_outputs) == torch.Tensor:
              pt_outputs = [pt_outputs.detach().numpy()]
            elif type(pt_outputs) in (list, tuple):
              pt_outputs = [o.detach().numpy() for o in pt_outputs]
            for l, r in zip(ort_outputs, pt_outputs):
    >         assert np.allclose(l, r, atol=1e-4, rtol=1e-4, equal_nan=True)
    E         assert False
    E          +  where False = <function allclose at 0x7fcee3f60550>(array([[[[-0.13030988,  0.44412366, -1.0274405 ],\n         [ 1.6727427 , -0.00934371, -0.14003941],\n         [ 1.48930...,\n         [ 0.7121257 , -0.5435372 ,  0.5330533 ],\n         [-1.9084809 , -0.06336791,  0.31587568]]]], dtype=float32), array([[[[ 1.03302915e-02,  4.43110734e-01, -6.65571392e-01],\n         [ 1.36875701e+00,  1.01466656e-01,  3.00002005e...8.79306126e+00,  1.40610695e+01],\n         [ 2.11407280e+00,  1.11426420e+01,  1.29983692e+01]]]],\n      dtype=float32), atol=0.0001, rtol=0.0001, equal_nan=True)
    E          +    where <function allclose at 0x7fcee3f60550> = np.allclose
    
    onnx_pytorch/tests/test_base.py:67: AssertionError
    ---------------------------------------------------------------------------------------------------------------------------------- Captured stdout call ----------------------------------------------------------------------------------------------------------------------------------
    # Autogenerated by onnx-pytorch.
    
    import glob
    import os
    import math
    
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    
    
    class Model(nn.Module):
      def __init__(self):
        super(Model, self).__init__()
        self._vars = nn.ParameterDict()
        self._regularizer_params = []
        for b in glob.glob(
            os.path.join(os.path.dirname(__file__), "variables", "*.npy")):
          v = torch.from_numpy(np.load(b))
          requires_grad = v.dtype.is_floating_point or v.dtype.is_complex
          self._vars[os.path.basename(b)[:-4]] = nn.Parameter(v, requires_grad=requires_grad)
        self.n_BatchNormalization_0 = nn.BatchNorm2d(**{'num_features': 32, 'eps': 9.999999747378752e-06, 'momentum': 0.8999999761581421})
        self.n_BatchNormalization_0.weight.data = self._vars["t_0"]
        self.n_BatchNormalization_0.bias.data = self._vars["t_1"]
        self.n_BatchNormalization_0.running_mean.data = self._vars["t_2"]
        self.n_BatchNormalization_0.running_var.data = self._vars["t_3"]
    
      def forward(self, *inputs):
        t_4, = inputs
        t_5 = self.n_BatchNormalization_0(t_4)
        return t_5
    
      
    @torch.no_grad()
    def test_run_model(inputs=[torch.from_numpy(np.random.randn(*[1, 32, 3, 3]).astype(np.float32))]):
      model = Model()
      model.eval()
      rs = model(*inputs)
      print(rs)
      return rs
    
    tensor([[[[ 1.03302915e-02,  4.43110734e-01, -6.65571392e-01],
              [ 1.36875701e+00,  1.01466656e-01,  3.00002005e-03],
              [ 1.23055291e+00, -6.36751056e-01, -8.78339052e-01]],
    
             [[-4.64856595e-01,  1.01388752e+00,  2.45039845e+00],
              [-1.51369238e+00, -7.56639481e-01, -1.26973033e+00],
              [ 3.04206324e+00, -1.07024908e+00,  1.22984998e-01]],
    
             [[-2.69752383e-01, -9.64242399e-01, -2.14787436e+00],
              [-3.66215348e-01, -7.90006399e-01, -1.19138491e+00],
              [-6.34383440e-01,  4.39469069e-01, -1.50392938e+00]],
    
             [[ 5.44885218e-01,  1.98177516e+00,  2.14701653e+00],
              [ 2.57987189e+00,  6.98854351e+00,  5.21536064e+00],
              [-1.14435458e+00,  1.33780324e+00,  3.80742407e+00]],
    
             [[-1.26968300e+00, -4.35954601e-01,  5.31747639e-01],
              [-2.33643723e+00, -2.31319714e+00, -1.69136405e+00],
              [-1.01814747e+00, -1.30057871e+00,  1.37861446e-01]],
    
             [[-7.35616326e-01, -1.18806839e+00, -1.10327315e+00],
              [-1.21497869e+00,  2.44642749e-01, -1.08295512e+00],
              [-7.17091501e-01, -2.20478797e+00, -1.50086403e+00]],
    
             [[-3.56589526e-01, -1.32543945e+00, -3.12406365e-02],
              [-7.59021521e-01,  8.00770998e-01, -1.86119422e-01],
              [-2.47674465e-01,  3.34041089e-01,  4.68768179e-01]],
    
             [[-3.02949500e+00, -9.34190691e-01, -6.01976514e-01],
              [-1.39591777e+00,  9.02901888e-01, -1.70761660e-01],
              [-7.49238193e-01, -8.39863300e-01, -1.61441386e+00]],
    
             [[ 5.27461350e-01, -1.29779911e+00, -1.84558618e+00],
              [-1.37622201e+00, -2.75002476e-02, -4.80182886e-01],
              [-1.48854208e+00, -2.23460600e-01, -1.37674761e+00]],
    
             [[ 8.06057811e-01,  8.74002814e-01, -1.36947542e-01],
              [ 1.77069342e+00,  1.01755619e+00,  3.84808660e-01],
              [ 6.74725831e-01,  3.76408148e+00,  2.22828791e-01]],
    
             [[ 3.71400404e+00,  2.69624019e+00,  1.77703583e+00],
              [ 2.33299780e+00,  2.48477370e-01,  3.29037476e+00],
              [ 1.03505504e+00,  2.66409278e+00,  3.81201744e+00]],
    
             [[ 1.02166690e-01, -1.42813325e-01, -4.73593771e-01],
              [-2.43843883e-01,  4.17272627e-01,  8.99561644e-01],
              [-7.05574870e-01,  2.67669708e-01,  5.22894859e-01]],
    
             [[-1.17352533e+00, -5.71887255e-01, -3.19737315e-01],
              [-1.18356705e+00, -2.85988569e+00, -7.28449404e-01],
              [-1.39273572e+00, -1.43941092e+00, -4.75017697e-01]],
    
             [[-9.16496933e-01, -1.37783527e+00,  1.75405681e+00],
              [-2.10685277e+00, -1.30036724e+00,  2.50304151e+00],
              [ 3.88478422e+00,  8.30973566e-01,  3.44308519e+00]],
    
             [[-1.08552837e+00, -1.35483885e+00,  9.10718501e-01],
              [ 7.22618103e-01, -3.82872492e-01,  3.09645385e-01],
              [ 1.25192356e+00,  1.48433483e+00, -7.20467627e-01]],
    
             [[ 2.90476012e+00,  2.38905120e+00,  3.20962930e+00],
              [ 4.72063154e-01,  1.03854692e+00,  1.42332995e+00],
              [-2.65931457e-01,  2.61525941e+00,  1.36843193e+00]],
    
             [[ 2.29905200e+00,  7.33413887e+00, -2.16392994e+01],
              [-9.26441479e+00, -4.63282776e+00,  8.38395882e+00],
              [-6.14768124e+00, -1.39623775e+01, -5.33043909e+00]],
    
             [[-1.18203115e+00,  7.83545434e-01, -1.33013463e+00],
              [ 1.55748868e+00,  2.99707323e-01, -1.74411178e-01],
              [-3.15904379e-01, -1.27137268e+00,  2.87169278e-01]],
    
             [[ 2.82064867e+00, -3.11068088e-01, -7.12420881e-01],
              [ 1.99217871e-01,  8.75358164e-01,  5.74787557e-01],
              [ 1.21458745e+00,  1.32562840e+00,  1.46251321e-01]],
    
             [[-2.08626246e+00, -1.01060474e+00, -1.84688258e+00],
              [-1.30853727e-01, -7.70996749e-01,  7.53721535e-01],
              [ 1.19904697e+00, -1.62641481e-01, -8.22388411e-01]],
    
             [[ 1.33589315e+00,  3.14021409e-01,  2.48438573e+00],
              [-2.21844530e+00,  5.82929230e+00,  2.27573776e+00],
              [ 5.50253439e+00,  2.19331694e+00,  4.72958851e+00]],
    
             [[-1.88447189e+00, -9.36176181e-01, -1.94018316e+00],
              [-1.43561804e+00, -4.47861242e+00, -3.19850969e+00],
              [-9.75790977e-01, -2.53019547e+00, -2.31218606e-01]],
    
             [[ 1.56031847e+00, -8.49840164e-01,  2.18206739e+00],
              [ 1.86757004e+00, -9.00376320e-01, -3.14888433e-02],
              [-2.60793537e-01,  3.81440073e-01,  1.87343729e+00]],
    
             [[-2.49012423e+00, -1.80255661e+01, -1.39246368e+01],
              [-7.12090111e+00, -1.14031210e+01, -3.02313328e+00],
              [-5.08311844e+00, -7.04758024e+00, -8.73173904e+00]],
    
             [[-3.17438930e-01, -5.40359974e-01, -8.29769790e-01],
              [-2.39079952e+00, -7.72985220e-01, -1.00527453e+00],
              [-4.49523091e-01, -1.43823814e+00, -8.15485835e-01]],
    
             [[-1.75956070e+00, -3.46495295e+00, -5.70724130e-01],
              [-1.35396278e+00, -1.52985775e+00, -9.15392518e-01],
              [ 1.32145539e-01, -1.15701056e+00, -3.28669786e+00]],
    
             [[ 9.83868241e-01,  1.86329472e+00,  3.16185784e+00],
              [ 3.53541660e+00,  3.46067637e-01, -4.36942726e-01],
              [ 8.96343887e-01,  1.15589023e+00,  1.66808695e-01]],
    
             [[ 1.45385325e+00, -2.57331681e+00,  2.47062397e+00],
              [ 5.09636497e+00, -4.55582333e+00,  6.47839642e+00],
              [ 6.10593510e+00,  8.07678998e-01,  2.03531766e+00]],
    
             [[-7.87889004e+00,  2.15410185e+00, -1.72434068e+00],
              [-4.13584518e+00, -5.07564878e+00, -7.04525948e+00],
              [-4.00902462e+00,  6.43981886e+00,  4.90088892e+00]],
    
             [[-8.97298872e-01, -6.58248663e-01,  3.97185832e-01],
              [ 1.26078165e+00, -5.88805914e-01, -1.58723903e+00],
              [ 1.83342293e-01,  5.42823195e-01, -8.95587146e-01]],
    
             [[-2.58091998e+00,  1.56836367e+00,  4.73235160e-01],
              [ 6.95867360e-01,  3.10397220e+00,  8.56488526e-01],
              [-5.79270065e-01, -1.23413563e+00,  2.25809479e+00]],
    
             [[ 1.47533607e+01,  5.50610733e+00,  1.87684441e+01],
              [ 1.49373131e+01,  8.79306126e+00,  1.40610695e+01],
              [ 2.11407280e+00,  1.11426420e+01,  1.29983692e+01]]]])
    ==================================================================================================================================== warnings summary ====================================================================================================================================
    ../../../../anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/mapping.py:27
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/mapping.py:27: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
        int(TensorProto.STRING): np.dtype(np.object)
    
    onnx_pytorch/tests/test_base.py: 186 warnings
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/numpy_helper.py:93: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
        if arr.dtype == np.object:
    
    onnx_pytorch/tests/test_base.py::TestBase::test_conv_batchnorm_maxpool_flatten_add_relu
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/helper.py:365: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
        is_iterable = isinstance(value, collections.Iterable)
    
    onnx_pytorch/tests/test_base.py::TestBase::test_and
    onnx_pytorch/tests/test_base.py::TestBase::test_and
      /tmp/tmpdcjl7rk5/model.py:33: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    onnx_pytorch/tests/test_base.py::TestBase::test_non_zero
      /tmp/tmpxjta2pa8/model.py:33: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    onnx_pytorch/tests/test_base.py::TestBase::test_resize_downsample_sizes_linear_pytorch_half_pixel
    onnx_pytorch/tests/test_base.py::TestBase::test_resize_pt_bilinear
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/torch/nn/functional.py:3454: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
        warnings.warn(
    
    -- Docs: https://docs.pytest.org/en/stable/warnings.html
    ================================================================================================================================ short test summary info =================================================================================================================================
    FAILED onnx_pytorch/tests/test_base.py::TestBase::test_conv_batchnorm_maxpool_flatten_add_relu - assert False
    FAILED onnx_pytorch/tests/test_base.py::TestBase::test_batch_normalization - assert False
    ================================================================================================================= 2 failed, 85 passed, 1 skipped, 193 warnings in 1.50s ==================================================================================================================
    
    opened by helion-du-mas-des-bourboux-thales 3
  • Function `code_gen.gen` failed with layer `LayerNormalization`. However, `BatchNormalization` succeeds.

    Function `code_gen.gen` failed with layer `LayerNormalization`. However, `BatchNormalization` succeeds.

    This is ipython code (at colab) which makes an error.

    Code

    !pip install tensorflow==2.6.4 onnx==1.12.0 onnx-pytorch git+https://github.com/onnx/tensorflow-onnx
    
    import tensorflow as tf
    import onnx
    
    from onnx_pytorch import code_gen
    
    with tf.device("/cpu:0"):
        tf_model = tf.keras.Sequential()
        tf_model.add(tf.keras.layers.Input((123,)))
        tf_model.add(tf.keras.layers.LayerNormalization())
        tf.keras.models.save_model(
            tf_model,
            "model.tf",
            overwrite=True,
            include_optimizer=False,
            save_format=None,
            signatures=None,
            options=None,
            save_traces=True
        )
    !python -m tf2onnx.convert --saved-model model.tf --output model.onnx --opset 11 --verbose
    code_gen.gen("model.onnx", "./")
    

    Error Message

    ---------------------------------------------------------------------------
    NotImplementedError                       Traceback (most recent call last)
    [<ipython-input-8-b7c6a94144c8>](https://localhost:8080/#) in <module>()
         21     )
         22 get_ipython().system('python -m tf2onnx.convert --saved-model model.tf --output model.onnx --opset 11 --verbose')
    ---> 23 code_gen.gen("model.onnx", "./")
    
    1 frames
    [/usr/local/lib/python3.7/dist-packages/onnx_pytorch/code_gen.py](https://localhost:8080/#) in gen(onnx_model, output_dir, overwrite, tensor_inplace, simplify_names, continue_on_error, embedding_conf_file, shape_infer)
        289       onnx_model, output_dir, overwrite, tensor_inplace, simplify_names,
        290       continue_on_error, embedding_conf_file, shape_infer)
    --> 291   model_code_generator.run()
        292 
        293 
    
    [/usr/local/lib/python3.7/dist-packages/onnx_pytorch/code_gen.py](https://localhost:8080/#) in run(self)
        245         else:
        246           raise NotImplementedError(
    --> 247               f"OpCodeGenerator is unimplemented for {n.op_type}.")
        248       else:
        249         try:
    
    NotImplementedError: OpCodeGenerator is unimplemented for ReduceSumSquare.
    
    opened by klae01 2
  • latest onnxruntime fails test

    latest onnxruntime fails test

    onnxruntime==1.9.0

    (onnx-pytorch) <me>:<me>/onnx-pytorch$ pytest onnx_pytorch/tests/test_base.py 
    =============================================================================================== test session starts ===============================================================================================
    platform linux -- Python 3.9.7, pytest-6.2.5, py-1.11.0, pluggy-1.0.0
    rootdir: <me>//onnx-pytorch
    plugins: dash-2.0.0
    collected 88 items                                                                                                                                                                                                
    
    onnx_pytorch/tests/test_base.py .F.................F..................s...........................s.....................                                                                                    [100%]
    
    ==================================================================================================== FAILURES =====================================================================================================
    ______________________________________________________________________________ TestBase.test_conv_batchnorm_maxpool_flatten_add_relu ______________________________________________________________________________
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7f7aa0349d90>
    
        def test_conv_batchnorm_maxpool_flatten_add_relu(self):
          reset_model(13)
          nps = [np.random.randn(1, 3, 224, 224).astype(np.float32)]
          inputs = Input(*nps)
          conv_node = Conv(inputs[0],
                           np.random.randn(32, 3, 3, 3).astype(np.float32),
                           np.random.randn(32).astype(np.float32))
          bn_node = BatchNormalization(
              conv_node,
              np.ones(32,).astype(np.float32),
              np.zeros(32,).astype(np.float32),
              np.random.randn(32).astype(np.float32),
              np.abs(np.random.randn(32).astype(np.float32)),
          )
          max_pool_node = MaxPool(bn_node,
                                  kernel_shape=(3, 3),
                                  strides=(2, 2),
                                  pads=(0, 0, 1, 1))
          flatten_node = Flatten(max_pool_node, axis=1)
          add_node = Add(flatten_node, np.random.randn(1).astype(np.float32))
          relu_node = Relu(add_node)
          Output(relu_node)
    >     self._run(list(zip(inputs, nps)))
    
    onnx_pytorch/tests/test_base.py:103: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7f7aa0349d90>
    inputs_np = [('_t_Input_0', array([[[[ 0.08681966,  0.31802994, -0.46221298, ...,  0.86617213,
              -0.37778926, -0.6164783 ]...     [-0.22646298, -0.44820276, -0.9840031 , ...,  0.5185814 ,
               1.3545119 , -0.98803467]]]], dtype=float32))]
    
        def _run(self, inputs_np):
          inputs_np_dict = {k: v for k, v in inputs_np if k != ""}
          model = onnx.ModelProto()
          model.CopyFrom(omm.model)
          sess_options = onnxruntime.SessionOptions()
          session = onnxruntime.InferenceSession(model.SerializeToString(),
                                                 sess_options)
          ort_outputs = session.run(None, inputs_np_dict)
          model.graph.ClearField("value_info")
          initializers = {i.name: i for i in model.graph.initializer}
          for i in model.graph.input:
            if i.name in initializers:
              continue
            for idx, d in enumerate(i.type.tensor_type.shape.dim):
              if d.dim_param != "":
                d.ClearField("dim_param")
              d.dim_value = inputs_np_dict[i.name].shape[idx]
          try:
            model = SymbolicShapeInference.infer_shapes(model, 2**31 - 1, True, True,
                                                        1)
          except:
            logging.warning("Shape infer by onnxruntime failed.")
          with TemporaryDirectory() as tmpdir:
            clear_op_code_generator()
            model_code_generator = code_gen.get_model_code_generator(
                model,
                output_dir=tmpdir,
                tensor_inplace=True,
                simplify_names=True,
                shape_infer=False)
            model_code_generator.run()
            spec = importlib.util.spec_from_file_location(
                "model", os.path.join(tmpdir, "model.py"))
            mod = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(mod)
            pt_outputs = mod.test_run_model(
                [torch.from_numpy(v) for k, v in inputs_np if k != ""])
            if type(pt_outputs) == torch.Tensor:
              pt_outputs = [pt_outputs.detach().numpy()]
            elif type(pt_outputs) in (list, tuple):
              pt_outputs = [o.detach().numpy() for o in pt_outputs]
            for l, r in zip(ort_outputs, pt_outputs):
    >         assert np.allclose(l, r, atol=1e-4, rtol=1e-4, equal_nan=True)
    E         assert False
    E          +  where False = <function allclose at 0x7f7b043f61f0>(array([[1.2242965 , 0.41702545, 0.28294265, ..., 0.12723899, 0.12723899,\n        0.        ]], dtype=float32), array([[5.1290994, 2.8178134, 2.4339228, ..., 7.237103 , 7.237103 ,\n        0.       ]], dtype=float32), atol=0.0001, rtol=0.0001, equal_nan=True)
    E          +    where <function allclose at 0x7f7b043f61f0> = np.allclose
    
    onnx_pytorch/tests/test_base.py:67: AssertionError
    ---------------------------------------------------------------------------------------------- Captured stdout call -----------------------------------------------------------------------------------------------
    # Autogenerated by onnx-pytorch.
    
    import glob
    import os
    import math
    
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    
    
    class Model(nn.Module):
      def __init__(self):
        super(Model, self).__init__()
        self._vars = nn.ParameterDict()
        self._regularizer_params = []
        for b in glob.glob(
            os.path.join(os.path.dirname(__file__), "variables", "*.npy")):
          v = torch.from_numpy(np.load(b))
          requires_grad = v.dtype.is_floating_point or v.dtype.is_complex
          self._vars[os.path.basename(b)[:-4]] = nn.Parameter(v, requires_grad=requires_grad)
        self.n_Conv_0 = nn.Conv2d(**{'groups': 1, 'dilation': 1, 'out_channels': 32, 'padding': 0, 'kernel_size': (3, 3), 'stride': 1, 'in_channels': 3, 'bias': True})
        self.n_Conv_0.weight.data = self._vars["t_0"]
        self.n_Conv_0.bias.data = self._vars["t_1"]
        self.n_BatchNormalization_0 = nn.BatchNorm2d(**{'num_features': 32, 'eps': 9.999999747378752e-06, 'momentum': 0.8999999761581421})
        self.n_BatchNormalization_0.weight.data = self._vars["t_2"]
        self.n_BatchNormalization_0.bias.data = self._vars["t_3"]
        self.n_BatchNormalization_0.running_mean.data = self._vars["t_4"]
        self.n_BatchNormalization_0.running_var.data = self._vars["t_5"]
        self.n_MaxPool_0 = nn.MaxPool2d(**{'dilation': 1, 'kernel_size': [3, 3], 'ceil_mode': False, 'stride': [2, 2], 'return_indices': True})
        self.n_Flatten_0 = nn.Flatten(**{'start_dim': 1})
    
      def forward(self, *inputs):
        t_7, = inputs
        t_8 = self.n_Conv_0(t_7)
        t_9 = self.n_BatchNormalization_0(t_8)
        t_9 = F.pad(t_9, [0, 1, 0, 1], value=float('-inf'))
        t_14, t_15 = self.n_MaxPool_0(t_9)
        t_16 = self.n_Flatten_0(t_14)
        t_17 = torch.add(t_16, self._vars["t_6"])
        t_18 = F.relu(t_17)
        return t_18
    
      def compatible_auto_pad(self, input, kernel_spatial_shape, nn_mod, auto_pad=None, **kwargs):
        input_spatial_shape = input.shape[2:]
        d = len(input_spatial_shape)
        strides = nn_mod.stride
        dilations = nn_mod.dilation
        output_spatial_shape = [math.ceil(float(l) / float(r)) for l, r in zip(input.shape[2:], strides)]
        pt_padding = [0] * 2 * d
        pad_shape = [0] * d
        for i in range(d):
          pad_shape[i] = (output_spatial_shape[i] - 1) * strides[i] + ((kernel_spatial_shape[i] - 1) * dilations[i] + 1) - input_spatial_shape[i]
          mean = pad_shape[i] // 2
          if auto_pad == b"SAME_UPPER":
            l, r = pad_shape[i] - mean, mean
          else:
            l, r = mean, pad_shape[i] - mean
          pt_padding.insert(0, r)
          pt_padding.insert(0, l)
        return F.pad(input, pt_padding)
    
    @torch.no_grad()
    def test_run_model(inputs=[torch.from_numpy(np.random.randn(*[1, 3, 224, 224]).astype(np.float32))]):
      model = Model()
      model.eval()
      rs = model(*inputs)
      print(rs)
      return rs
    
    tensor([[5.12909937, 2.81781340, 2.43392277,  ..., 7.23710299, 7.23710299,
             0.00000000]])
    ------------------------------------------------------------------------------------------------ Captured log call ------------------------------------------------------------------------------------------------
    WARNING  root:__init__.py:41 Cannot get default value for dilations of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for kernel_shape of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for pads of MaxPool.
    WARNING  root:__init__.py:41 Cannot get default value for strides of MaxPool.
    WARNING  root:MaxPool.py:47 MaxPool with asymmetric padding will get incorrect indices.
    ________________________________________________________________________________________ TestBase.test_batch_normalization ________________________________________________________________________________________
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7f7a9eacfa00>
    
        def test_batch_normalization(self):
          reset_model(13)
          nps = [np.random.randn(1, 32, 3, 3).astype(np.float32)]
          inputs = Input(*nps)
          Output(BatchNormalization(
              inputs[0],
              np.ones(32,).astype(np.float32),
              np.zeros(32,).astype(np.float32),
              np.random.randn(32).astype(np.float32),
              np.abs(np.random.randn(32).astype(np.float32)),
          ),
                 output_num=1)
    >     self._run(list(zip(inputs, nps)))
    
    onnx_pytorch/tests/test_base.py:239: 
    _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
    
    self = <onnx_pytorch.tests.test_base.TestBase object at 0x7f7a9eacfa00>
    inputs_np = [('_t_Input_0', array([[[[ 0.7745172 , -1.4926829 , -1.6556902 ],
             [-0.7622266 ,  0.04088752,  0.83572936],
      ...         [ 0.5896988 , -0.8963601 ,  0.9315137 ],
             [-1.5789044 , -0.9300383 , -0.8664075 ]]]], dtype=float32))]
    
        def _run(self, inputs_np):
          inputs_np_dict = {k: v for k, v in inputs_np if k != ""}
          model = onnx.ModelProto()
          model.CopyFrom(omm.model)
          sess_options = onnxruntime.SessionOptions()
          session = onnxruntime.InferenceSession(model.SerializeToString(),
                                                 sess_options)
          ort_outputs = session.run(None, inputs_np_dict)
          model.graph.ClearField("value_info")
          initializers = {i.name: i for i in model.graph.initializer}
          for i in model.graph.input:
            if i.name in initializers:
              continue
            for idx, d in enumerate(i.type.tensor_type.shape.dim):
              if d.dim_param != "":
                d.ClearField("dim_param")
              d.dim_value = inputs_np_dict[i.name].shape[idx]
          try:
            model = SymbolicShapeInference.infer_shapes(model, 2**31 - 1, True, True,
                                                        1)
          except:
            logging.warning("Shape infer by onnxruntime failed.")
          with TemporaryDirectory() as tmpdir:
            clear_op_code_generator()
            model_code_generator = code_gen.get_model_code_generator(
                model,
                output_dir=tmpdir,
                tensor_inplace=True,
                simplify_names=True,
                shape_infer=False)
            model_code_generator.run()
            spec = importlib.util.spec_from_file_location(
                "model", os.path.join(tmpdir, "model.py"))
            mod = importlib.util.module_from_spec(spec)
            spec.loader.exec_module(mod)
            pt_outputs = mod.test_run_model(
                [torch.from_numpy(v) for k, v in inputs_np if k != ""])
            if type(pt_outputs) == torch.Tensor:
              pt_outputs = [pt_outputs.detach().numpy()]
            elif type(pt_outputs) in (list, tuple):
              pt_outputs = [o.detach().numpy() for o in pt_outputs]
            for l, r in zip(ort_outputs, pt_outputs):
    >         assert np.allclose(l, r, atol=1e-4, rtol=1e-4, equal_nan=True)
    E         assert False
    E          +  where False = <function allclose at 0x7f7b043f61f0>(array([[[[ 9.91475940e-01, -1.39311564e+00, -1.56456316e+00],\n         [-6.24837637e-01,  2.19860300e-01,  1.05585766e...7.59569287e-01,  1.25005341e+00],\n         [-1.50998020e+00, -7.96596169e-01, -7.26638436e-01]]]],\n      dtype=float32), array([[[[ 2.11514905e-02, -1.92307127e+00, -2.06285715e+00],\n         [-1.29667318e+00, -6.07967854e-01,  7.36436024e...8.19936633e-01,  1.26697469e+00],\n         [-1.59920776e+00, -8.58387530e-01, -7.85739303e-01]]]],\n      dtype=float32), atol=0.0001, rtol=0.0001, equal_nan=True)
    E          +    where <function allclose at 0x7f7b043f61f0> = np.allclose
    
    onnx_pytorch/tests/test_base.py:67: AssertionError
    ---------------------------------------------------------------------------------------------- Captured stdout call -----------------------------------------------------------------------------------------------
    # Autogenerated by onnx-pytorch.
    
    import glob
    import os
    import math
    
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torchvision
    
    
    class Model(nn.Module):
      def __init__(self):
        super(Model, self).__init__()
        self._vars = nn.ParameterDict()
        self._regularizer_params = []
        for b in glob.glob(
            os.path.join(os.path.dirname(__file__), "variables", "*.npy")):
          v = torch.from_numpy(np.load(b))
          requires_grad = v.dtype.is_floating_point or v.dtype.is_complex
          self._vars[os.path.basename(b)[:-4]] = nn.Parameter(v, requires_grad=requires_grad)
        self.n_BatchNormalization_0 = nn.BatchNorm2d(**{'num_features': 32, 'eps': 9.999999747378752e-06, 'momentum': 0.8999999761581421})
        self.n_BatchNormalization_0.weight.data = self._vars["t_0"]
        self.n_BatchNormalization_0.bias.data = self._vars["t_1"]
        self.n_BatchNormalization_0.running_mean.data = self._vars["t_2"]
        self.n_BatchNormalization_0.running_var.data = self._vars["t_3"]
    
      def forward(self, *inputs):
        t_4, = inputs
        t_5 = self.n_BatchNormalization_0(t_4)
        return t_5
    
      
    @torch.no_grad()
    def test_run_model(inputs=[torch.from_numpy(np.random.randn(*[1, 32, 3, 3]).astype(np.float32))]):
      model = Model()
      model.eval()
      rs = model(*inputs)
      print(rs)
      return rs
    
    tensor([[[[ 2.11514905e-02, -1.92307127e+00, -2.06285715e+00],
              [-1.29667318e+00, -6.07967854e-01,  7.36436024e-02],
              [-1.24425519e+00, -4.32142057e-03, -4.06830050e-02]],
    
             [[ 4.27835196e-01, -4.02293563e-01,  1.25209391e+00],
              [-1.35146415e+00, -2.52955347e-01,  1.47779858e+00],
              [-6.49659276e-01,  4.79720533e-01,  2.22885060e+00]],
    
             [[-2.09176064e+00, -1.05400944e+00, -2.06602669e+00],
              [-1.94747806e+00, -2.88019228e+00, -2.62886310e+00],
              [-3.44989538e+00, -2.75009131e+00, -2.39562416e+00]],
    
             [[ 1.11013091e+00,  1.28344691e+00, -6.32941604e-01],
              [ 7.57854998e-01, -2.10156515e-01,  1.47328424e+00],
              [-2.59426326e-01, -2.84430325e-01,  9.00919676e-01]],
    
             [[ 4.08791155e-01,  2.89755702e-01,  6.62197396e-02],
              [-1.76871634e+00, -5.03794849e-01, -4.27903265e-01],
              [ 9.95307684e-01, -4.92222719e-02, -1.14720094e+00]],
    
             [[-1.45369780e+00,  2.33676344e-01, -1.03255248e+00],
              [ 1.32926130e+00,  2.23724812e-01, -2.06382227e+00],
              [-7.27365375e-01, -3.29207569e-01, -1.84505939e+00]],
    
             [[-7.30695367e-01, -9.48697507e-01,  1.02768219e+00],
              [-3.11210537e+00, -2.19822788e+00,  1.94993824e-01],
              [-5.17953396e-01,  9.80266273e-01,  1.58678629e-02]],
    
             [[-5.50329685e-01, -2.20515108e+00,  5.57632744e-01],
              [-4.76857811e-01,  1.53507262e-01, -1.43097568e+00],
              [ 4.82103467e-01, -1.68012989e+00,  3.24517749e-02]],
    
             [[-5.33442855e-01,  5.51209152e-01,  9.62817371e-01],
              [ 2.40877175e+00,  1.32837451e+00,  1.65606558e+00],
              [-4.13032651e-01,  3.72783518e+00,  3.40976954e-01]],
    
             [[ 6.73895895e-01, -2.66826779e-01,  2.70163131e+00],
              [ 1.51779735e+00,  1.03770292e+00,  3.58062625e-01],
              [ 3.07913351e+00,  1.82803762e+00,  1.80789387e+00]],
    
             [[-5.71182489e-01, -9.17714715e-01, -1.13700569e+00],
              [-1.86594054e-01, -3.26027721e-01, -7.83864677e-01],
              [-8.37005913e-01, -1.44201532e-01, -1.28018081e+00]],
    
             [[-2.11968374e+00,  4.36148047e-01, -2.25281045e-01],
              [-2.65030837e+00, -2.46051192e+00, -7.95132637e-01],
              [-2.29407355e-01, -2.05399799e+00, -3.97852802e+00]],
    
             [[ 1.99362409e+00, -2.22769213e+00,  3.03191710e+00],
              [ 6.41038036e+00,  7.57672191e-01,  2.30211586e-01],
              [ 4.41129446e+00,  5.71550274e+00,  2.88953924e+00]],
    
             [[-1.67502999e+00,  4.71590012e-01,  4.20928180e-01],
              [ 1.42629158e+00,  2.22070456e+00, -2.48521614e+00],
              [-2.90164924e+00, -1.70486748e+00,  3.05718213e-01]],
    
             [[ 1.31291842e+00,  1.51544333e+00,  9.34356451e-01],
              [ 2.45068908e+00,  9.35024202e-01,  1.16957915e+00],
              [ 1.73736286e+00,  1.44560516e+00,  1.79951024e+00]],
    
             [[-1.78257480e-01, -1.50668001e+00, -3.93693089e-01],
              [ 9.00940716e-01,  1.75067687e+00,  1.56921744e-01],
              [-1.68945998e-01, -7.10348845e-01,  2.69243687e-01]],
    
             [[-1.44925761e+00, -8.86168003e-01, -2.19026709e+00],
              [-5.69859803e-01,  6.73547387e-01, -1.53828010e-01],
              [-3.62083554e+00, -1.68905407e-02, -1.03936875e+00]],
    
             [[-2.79535174e+00, -3.87425613e+00,  4.66894388e+00],
              [-3.84637070e+00, -1.71726680e+00, -3.25723600e+00],
              [-6.84032822e+00, -1.06125496e-01,  2.27101946e+00]],
    
             [[ 9.65043604e-01, -3.17505288e+00,  1.14182040e-01],
              [-2.67569017e+00,  1.84636426e+00, -7.68563211e-01],
              [-2.11804008e+00, -2.63963199e+00, -2.71025586e+00]],
    
             [[-4.97454464e-01, -1.84077692e+00, -1.13075355e-03],
              [-2.12281924e-02,  1.43575883e+00, -9.79906857e-01],
              [-1.43173182e+00, -1.10443759e+00, -1.83555901e+00]],
    
             [[ 6.83952451e-01,  3.86664987e+00,  6.27903759e-01],
              [ 6.22224391e-01,  3.38052392e+00,  2.65812469e+00],
              [ 1.35363007e+00, -1.32484972e+00,  2.16152740e+00]],
    
             [[-2.97609538e-01, -5.97289562e-01, -5.53929061e-02],
              [-9.01254416e-01, -1.31918341e-01, -1.91106975e+00],
              [ 1.30615933e-02, -1.13118947e+00, -1.71910405e+00]],
    
             [[-3.56180477e+00,  1.03958499e+00, -2.59528255e+00],
              [-3.63754392e-01,  1.45368779e+00,  6.28106117e-01],
              [-1.52019906e+00,  2.27045107e+00, -2.04589820e+00]],
    
             [[ 2.96379948e+00,  1.40205872e+00,  6.10626042e-01],
              [ 9.29273069e-01, -2.59484500e-01,  1.29350579e+00],
              [-2.03710818e+00,  2.09723279e-01,  3.75842363e-01]],
    
             [[ 1.15190208e+00, -1.79379475e+00, -1.03870857e+00],
              [-2.49877191e+00,  5.20503461e-01, -1.32148862e+00],
              [ 1.14259291e+00, -1.22499466e+00, -1.77996016e+00]],
    
             [[ 5.53968525e+00,  2.88090467e+00,  1.01117289e+00],
              [ 5.58917379e+00,  6.44941425e+00,  4.39829063e+00],
              [ 5.66234684e+00,  6.48445272e+00,  7.14439631e+00]],
    
             [[ 2.75992036e-01,  2.69333333e-01,  2.09721066e-02],
              [-3.83876115e-01, -8.62384975e-01, -9.11671594e-02],
              [ 6.93263173e-01,  1.74463049e-01,  4.79215592e-01]],
    
             [[-1.01199875e+01, -7.20881653e+00, -5.04845047e+00],
              [-6.25630283e+00, -1.05240383e+01, -2.73052502e+00],
              [-7.76849747e+00, -2.49891591e+00, -8.07278156e+00]],
    
             [[ 1.54215002e+00,  1.09585929e+00,  1.14009336e-01],
              [ 1.12563217e+00,  2.39603353e+00,  1.73558319e+00],
              [-3.81684572e-01,  5.00159383e-01,  1.24173117e+00]],
    
             [[-1.65010154e-01, -5.65712094e-01,  3.59763801e-02],
              [-3.90798420e-01, -1.16110936e-01, -1.36400402e-01],
              [-1.34565961e+00,  4.39721853e-01,  8.28600407e-01]],
    
             [[-4.84672832e+00, -6.60604596e-01,  1.73845172e-01],
              [-5.31565666e-01, -1.43216908e-01,  3.46095473e-01],
              [-2.08822680e+00, -1.05168688e+00, -1.98360145e-01]],
    
             [[ 1.07395852e+00,  1.13209188e+00, -5.66867292e-01],
              [ 8.76719356e-01, -8.19936633e-01,  1.26697469e+00],
              [-1.59920776e+00, -8.58387530e-01, -7.85739303e-01]]]])
    ================================================================================================ warnings summary =================================================================================================
    ../../../../anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/mapping.py:27
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/mapping.py:27: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
        int(TensorProto.STRING): np.dtype(np.object)
    
    onnx_pytorch/tests/test_base.py: 182 warnings
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/numpy_helper.py:93: DeprecationWarning: `np.object` is a deprecated alias for the builtin `object`. To silence this warning, use `object` by itself. Doing this will not modify any behavior and is safe. 
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
        if arr.dtype == np.object:
    
    onnx_pytorch/tests/test_base.py::TestBase::test_conv_batchnorm_maxpool_flatten_add_relu
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/onnx/helper.py:365: DeprecationWarning: Using or importing the ABCs from 'collections' instead of from 'collections.abc' is deprecated since Python 3.3, and in 3.10 it will stop working
        is_iterable = isinstance(value, collections.Iterable)
    
    onnx_pytorch/tests/test_base.py::TestBase::test_and
    onnx_pytorch/tests/test_base.py::TestBase::test_and
      /tmp/tmpms_osm8m/model.py:33: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    onnx_pytorch/tests/test_base.py::TestBase::test_non_zero
      /tmp/tmpjqh2vsx2/model.py:33: DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`. To silence this warning, use `bool` by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use `np.bool_` here.
      Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
    
    onnx_pytorch/tests/test_base.py::TestBase::test_resize_pt_bilinear
      <me>/anaconda3/envs/onnx-pytorch/lib/python3.9/site-packages/torch/nn/functional.py:3631: UserWarning: Default upsampling behavior when mode=bilinear is changed to align_corners=False since 0.4.0. Please specify align_corners=True if the old behavior is desired. See the documentation of nn.Upsample for details.
        warnings.warn(
    
    -- Docs: https://docs.pytest.org/en/stable/warnings.html
    ============================================================================================= short test summary info =============================================================================================
    FAILED onnx_pytorch/tests/test_base.py::TestBase::test_conv_batchnorm_maxpool_flatten_add_relu - assert False
    FAILED onnx_pytorch/tests/test_base.py::TestBase::test_batch_normalization - assert False
    ============================================================================== 2 failed, 84 passed, 2 skipped, 188 warnings in 1.47s ==============================================================================
    
    
    opened by helion-du-mas-des-bourboux-thales 2
  • Tensors in the converted model are being placed in the wrong device

    Tensors in the converted model are being placed in the wrong device

    I've converted a BiT model (https://tfhub.dev/google/bit/m-r101x1/1) from TF to ONNX, and then used this package to convert to Pytorch.

    The result works out-of-the-box in the CPU, I get the same outputs as the TF model. But when I try it in the GPU, I get some fatal errors saying that some ops are using tensors in different devices. Looking into the generated code, I see a lot of calls like these in forward(): t_323 = torch.tensor(t_321.shape)

    These are being created in the CPU, so operations with these tensors (when the input is in the GPU) result in error. I can fix it manually by changing all such calls to: torch.tensor(..., device=inputs[0].device), and then everything works well: the results are the same as TF, and the performance is also the same.

    opened by jorgemcgomes 2
  • change directory is missing

    change directory is missing

    https://github.com/fumihwh/onnx-pytorch/blob/29cd1dafb47e4e4bc598c700c44f53815e7b8c9a/README.md?plain=1#L19

    the command line block should be

    git clone https://github.com/fumihwh/onnx-pytorch.git
    cd onnx-pytorch
    pip install -r requirements.txt
    pip install -e .
    
    opened by londumas 1
  • input name in onnxruntime is hardcoded in README

    input name in onnxruntime is hardcoded in README

    https://github.com/fumihwh/onnx-pytorch/blob/29cd1dafb47e4e4bc598c700c44f53815e7b8c9a/README.md?plain=1#L87

    I would suggest changing the following line

    inputs = {"data": inp}
    

    to this one, in the README

    inputs = {session.get_inputs()[0].name: inp}
    

    This allows to adapt to a way larger variety of model, without hardcoding the input name.

    opened by londumas 1
  • DecodeError: Unexpected end-group tag.

    DecodeError: Unexpected end-group tag.

    Hi, I tried this tool for the first time

    I did it the following way:

    1. pip install onnx_pytorch
    2. from onnx_pytorch import code_gen

    3. code_gen.gen('resnet18-v2-7.onnx', './')

    But, there is an error about: DecodeError: Unexpected end-group tag.

    How to deal it?

    opened by xiaopengaia 1
  • OpCodeGenerator is unimplemented for Softplus

    OpCodeGenerator is unimplemented for Softplus

    When trying to convert a Yolov4 ONNX model with onnx-pytorch I get the following error. Seems to be an unimplemented OpCode for Softplus.

    WARNING:root:Cannot get default value for dilations of Conv. WARNING:root:Cannot get default value for kernel_shape of Conv. WARNING:root:Cannot get default value for pads of Conv. WARNING:root:Cannot get default value for strides of Conv. Traceback (most recent call last): File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main return _run_code(code, main_globals, None, File "/usr/lib/python3.8/runpy.py", line 87, in _run_code exec(code, run_globals) File "/someenv/lib/python3.8/site-packages/onnx_pytorch/code_gen.py", line 378, in main() File "/someenv/python3.8/site-packages/onnx_pytorch/code_gen.py", line 368, in main gen(onnx_model=args.onnx_model_path, File "/someenv/python3.8/site-packages/onnx_pytorch/code_gen.py", line 291, in gen model_code_generator.run() File "/someenv/python3.8/site-packages/onnx_pytorch/code_gen.py", line 246, in run raise NotImplementedError( NotImplementedError: OpCodeGenerator is unimplemented for Softplus.

    Installed version:

    pip show onnx_pytorch Name: onnx-pytorch Version: 0.1.4 Summary: Convert ONNX to PyTorch code. Home-page: https://github.com/fumihwh/onnx-pytorch Author: fumihwh Author-email: [email protected] License: Apache 2.0 Location: /someenv/lib/python3.8/site-packages Requires: torchvision, setuptools, torch, PyYAML, tqdm, onnxruntime, onnx, sympy, pytest, numpy Required-by:

    opened by juhan 1
  • NotImplementedError: OpCodeGenerator is unimplemented for DequantizeLinear.

    NotImplementedError: OpCodeGenerator is unimplemented for DequantizeLinear.

    opened by LiuFeiOne 1
Releases(v0.1.5)
  • v0.1.5(Aug 3, 2022)

    What's Changed

    • create python publish action by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/42

    Full Changelog: https://github.com/fumihwh/onnx-pytorch/compare/v0.1.4...v0.1.5

    Source code(tar.gz)
    Source code(zip)
  • v0.1.4(Nov 23, 2021)

    What's Changed

    • Add some ops by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/13
    • Bump up to 0.1.3 by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/14
    • Add ops and model test cases by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/15
    • Support frcnn by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/16
    • Support mask rcnn, ssd and style transfer models by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/17
    • refactor: Small readability improvements by @rogier-stegeman in https://github.com/fumihwh/onnx-pytorch/pull/4
    • Fix CI by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/25
    • Some nit by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/24
    • add OP Elu/Sub/Tanh by @maimaixiong in https://github.com/fumihwh/onnx-pytorch/pull/19
    • Adds device information when creating new tensors by @jorgemcgomes in https://github.com/fumihwh/onnx-pytorch/pull/29
    • Ci by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/40
    • add version by @helion-du-mas-des-bourboux-thales in https://github.com/fumihwh/onnx-pytorch/pull/33
    • more general tutorial by @helion-du-mas-des-bourboux-thales in https://github.com/fumihwh/onnx-pytorch/pull/37
    • Fix dependencies by @helion-du-mas-des-bourboux-thales in https://github.com/fumihwh/onnx-pytorch/pull/35
    • Release 0.1.4 by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/41

    New Contributors

    • @rogier-stegeman made their first contribution in https://github.com/fumihwh/onnx-pytorch/pull/4
    • @maimaixiong made their first contribution in https://github.com/fumihwh/onnx-pytorch/pull/19
    • @jorgemcgomes made their first contribution in https://github.com/fumihwh/onnx-pytorch/pull/29
    • @helion-du-mas-des-bourboux-thales made their first contribution in https://github.com/fumihwh/onnx-pytorch/pull/33

    Full Changelog: https://github.com/fumihwh/onnx-pytorch/compare/v0.1.3...v0.1.4

    Source code(tar.gz)
    Source code(zip)
  • v0.1.3(Nov 18, 2021)

    What's Changed

    • Develop by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/1
    • Add tutorial and fix some bugs by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/2
    • Bump up to 0.1.2 by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/3
    • Introduce new features and some bug fix by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/5
    • Ci by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/6
    • Add some ops by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/7
    • Improve ci by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/8
    • Add some ops by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/9
    • Fix ops and use ParameterDict by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/10
    • Ci by @fumihwh in https://github.com/fumihwh/onnx-pytorch/pull/11

    Full Changelog: https://github.com/fumihwh/onnx-pytorch/compare/v0.1.2...v0.1.3

    Source code(tar.gz)
    Source code(zip)
Owner
Wenhao Hu
Wenhao Hu
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
ReAct: Out-of-distribution Detection With Rectified Activations

ReAct: Out-of-distribution Detection With Rectified Activations This is the source code for paper ReAct: Out-of-distribution Detection With Rectified

38 Dec 05, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Customised to detect objects automatically by a given model file(onnx)

LabelImg LabelImg is a graphical image annotation tool. It is written in Python and uses Qt for its graphical interface. Annotations are saved as XML

Heeone Lee 1 Jun 07, 2022
Unsupervised Representation Learning via Neural Activation Coding

Neural Activation Coding This repository contains the code for the paper "Unsupervised Representation Learning via Neural Activation Coding" published

yookoon park 5 May 26, 2022
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022
A scientific and useful toolbox, which contains practical and effective long-tail related tricks with extensive experimental results

Bag of tricks for long-tailed visual recognition with deep convolutional neural networks This repository is the official PyTorch implementation of AAA

Yong-Shun Zhang 181 Dec 28, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
NeurIPS 2021 Datasets and Benchmarks Track

AP-10K: A Benchmark for Animal Pose Estimation in the Wild Introduction | Updates | Overview | Download | Training Code | Key Questions | License Intr

AP-10K 82 Dec 11, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
BMVC 2021 Oral: code for BI-GCN: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation

BMVC 2021 BI-GConv: Boundary-Aware Input-Dependent Graph Convolution for Biomedical Image Segmentation Necassary Dependencies: PyTorch 1.2.0 Python 3.

Yanda Meng 15 Nov 08, 2022
A hue shift helper for OBS

obs-hue-shift A hue shift helper for OBS This is a repo based on the really nice script Hegemege made. The original script can be found https://gist.g

Alexis Tyler 1 Jan 10, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023