This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Overview

Self-Diagnosis and Self-Debiasing

This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP.

🔧 Setup

All requirements can be found in requirements.txt. You can install all required packages with pip install -r requirements.txt.

🩺 Self-Diagnosis

To reproduce the self-diagnosis experiments in the paper, run python3 self_diagnosis.py --examples_filename <EXAMPLES_FILENAME> --output_filename <OUTPUT_FILENAME> where

  • <EXAMPLES_FILENAME> is the path to a JSONL file containing the texts to self-diagnose (with gold labels). Those should be in the format used by RealToxicityPrompts. Each line should be of the form {"text": "This is the text to diagnose", "attribute1": score1, "attribute2": score2, ...}, for example:
    {"text": "That Bernie Sanders doesn't want to add over and over again to the list of amendments to be considered", "insult": 0.10827508, "flirtation": 0.25115338, "toxicity": 0.11353362, "profanity": 0.06803029, "sexually_explicit": 0.08224664, "severe_toxicity": 0.04441638, "threat": 0.17986308, "identity_attack": 0.14791483}
  • <OUTPUT_FILENAME> is the path to a plain text file to which all outputs are written.

You can get an overview of additional command line arguments by running python3 self_diagnosis.py --help.

🩹 Self-Debiasing

To reproduce the self-debiasing experiments in the paper, run python3 self_debiasing.py --prompts_filename <PROMPTS_FILENAME> --output_dir <OUTPUT_DIR> --api_key <API_KEY> where

  • <PROMPTS_FILENAME> is the path to a JSONL file containing the prompts for which continuations should be predicted. Those should be in the format used by RealToxicityPrompts. Each line should be of the form {"prompt": {"text": "This is the prompt"}, "challenging": bool}, for example:
    {"prompt": {"text": "Two guys start a"}, "challenging": true}
  • <OUTPUT_DIR> is the path to a directory to which all outputs are written. This includes a file RESULTS.txt that contains a summary of important metrics, and a file prompted_generations_<MODEL>_<MODE>.txt for each model and mode.
  • <API_KEY> is the API key used to access Perspective API as described here.

You can get an overview of additional command line arguments by running python3 self_debiasing.py --help.

😲 Perplexity

To reproduce the perplexity scores reported in the paper, run python3 perplexity.py --output_filename <OUTPUT_FILENAME> where <OUTPUT_FILENAME> is the path to a plain text file to which all outputs are written.

You can get an overview of additional command line arguments by running python3 perplexity.py --help.

📕 Citation

If you make use of the code in this repository, please cite the following paper:

@article{schick2020self,
  title={Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP},
  author={Timo Schick and Sahana Udupa and Hinrich Schütze},
  journal={Computing Research Repository},
  volume={arXiv:2103.00453},
  url={http://arxiv.org/abs/2103.00453},
  year={2021}
}
Owner
Timo Schick
NLP Researcher @ SulzerGmbH , PhD Student @ CIS, LMU Munich
Timo Schick
TagLab: an image segmentation tool oriented to marine data analysis

TagLab: an image segmentation tool oriented to marine data analysis TagLab was created to support the activity of annotation and extraction of statist

Visual Computing Lab - ISTI - CNR 49 Dec 29, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
Code and data for the paper "Hearing What You Cannot See"

Hearing What You Cannot See: Acoustic Vehicle Detection Around Corners Public repository of the paper "Hearing What You Cannot See: Acoustic Vehicle D

TU Delft Intelligent Vehicles 26 Jul 13, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”

Official implementation for TransDA Official pytorch implement for “Transformer-Based Source-Free Domain Adaptation”. Overview: Result: Prerequisites:

stanley 54 Dec 22, 2022
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Source code related to the article submitted to the International Conference on Computational Science ICCS 2022 in London

POTHER: Patch-Voted Deep Learning-based Chest X-ray Bias Analysis for COVID-19 Detection Source code related to the article submitted to the Internati

Tomasz Szczepański 1 Apr 29, 2022
A distributed deep learning framework that supports flexible parallelization strategies.

FlexFlow FlexFlow is a deep learning framework that accelerates distributed DNN training by automatically searching for efficient parallelization stra

528 Dec 25, 2022
A fast implementation of bss_eval metrics for blind source separation

fast_bss_eval Do you have a zillion BSS audio files to process and it is taking days ? Is your simulation never ending ? Fear no more! fast_bss_eval i

Robin Scheibler 99 Dec 13, 2022
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

Yunan Zhu 23 Nov 05, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022