IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

Overview

SSKT(Accepted WACV2022)

Concept map

concept

Dataset

  • Image dataset
    • CIFAR10 (torchvision)
    • CIFAR100 (torchvision)
    • STL10 (torchvision)
    • Pascal VOC (torchvision)
    • ImageNet(I) (torchvision)
    • Places365(P)
  • Video dataset

Pre-trained models

  • Imagenet
    • we used the pre-trained model in torchvision.
    • using resnet18, 50
  • Places365

Option

  • isSource
    • Single Source Transfer Module
    • Transfer Module X, Only using auxiliary layer
  • transfer_module
    • Single Source Transfer Module
  • multi_source
    • multiple task transfer learning

Training

  • 2D PreLeKT
 python main.py --model resnet20  --source_arch resnet50 --sourceKind places365 --result /raid/video_data/output/PreLeKT --dataset stl10 --lr 0.1 --wd 5e-4 --epochs 200 --classifier_loss_method ce --auxiliary_loss_method kd --isSource --multi_source --transfer_module
  • 3D PreLeKT
 python main.py --root_path /raid/video_data/ucf101/ --video_path frames --annotation_path ucf101_01.json  --result_path /raid/video_data/output/PreLeKT --n_classes 400 --n_finetune_classes 101 --model resnet --model_depth 18 --resnet_shortcut A --batch_size 128 --n_threads 4 --pretrain_path /nvadmin/Pretrained_model/resnet-18-kinetics.pth --ft_begin_index 4 --dataset ucf101 --isSource --transfer_module --multi_source

Experiment

Comparison with other knowledge transfer methods.

  • For a further analysis of SSKT, we compared its performance with those of typical knowledge transfer methods, namely KD[1] and DML[3]
  • For KD, the details for learning were set the same as in [1], and for DML, training was performed in the same way as in [3].
  • In the case of 3D-CNN-based action classification[2], both learning from scratch and fine tuning results were included
Tt Model KD DML SSKT(Ts)
CIFAR10 ResNet20 91.75±0.24 92.37±0.15 92.46±0.15 (P+I)
CIFAR10 ResNet32 92.61±0.31 93.26±0.21 93.38±0.02 (P+I)
CIFAR100 ResNet20 68.66±0.24 69.48±0.05 68.63±0.12 (I)
CIFAR100 ResNet32 70.5±0.05 71.9±0.03 70.94±0.36 (P+I)
STL10 ResNet20 77.67±1.41 78.23±1.23 84.56±0.35 (P+I)
STL10 ResNet32 76.07±0.67 77.14±1.64 83.68±0.28 (I)
VOC ResNet18 64.11±0.18 39.89±0.07 76.42±0.06 (P+I)
VOC ResNet34 64.57±0.12 39.97±0.16 77.02±0.02 (P+I)
VOC ResNet50 62.39±0.6 39.65±0.03 77.1±0.14 (P+I)
UCF101 3D ResNet18(scratch) - 13.8 52.19(P+I)
UCF101 3D ResNet18(fine-tuning) - 83.95 84.58 (P)
HMDB51 3D ResNet18(scratch) - 3.01 17.91 (P+I)
HMDB51 3D ResNet18(fine-tuning) - 56.44 57.82 (P)

The performance comparison with MAXL[4], another auxiliary learning-based transfer learning method

  • The difference between the learning scheduler in MAXL and in our experiment is whether cosine annealing scheduler and focal loss are used or not.
  • In VGG16, SSKT showed better performance in all settings. In ResNet20, we also showed better performance in our settings than MAXL in all settings.
Tt Model MAXL (ψ[i]) SSKT (Ts, Loss ) Ts Model
CIFAR10 VGG16 93.49±0.05 (5) 94.1±0.1 (I, F) VGG16
CIFAR10 VGG16 - 94.22±0.02 (I, CE) VGG16
CIFAR10 ResNet20 91.56±0.16 (10) 91.48±0.03 (I, F) VGG16
CIFAR10 ResNet20 - 92.46±0.15 (P+I, CE) ResNet50, ResNet50

Citation

If you use SSKD in your research, please consider citing:

@InProceedings{SSKD_2022_WACV,
author = {Seungbum Hong, Jihun Yoon, and Min-Kook Choi},
title = {Self-Supervised Knowledge Transfer via Loosely Supervised Auxiliary Tasks},
booktitle = {In The IEEE Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022}
}

References

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Code for the RA-L (ICRA) 2021 paper "SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition"

SeqNet: Learning Descriptors for Sequence-Based Hierarchical Place Recognition [ArXiv+Supplementary] [IEEE Xplore RA-L 2021] [ICRA 2021 YouTube Video]

Sourav Garg 63 Dec 12, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
This repository holds code and data for our PETS'22 article 'From "Onion Not Found" to Guard Discovery'.

From "Onion Not Found" to Guard Discovery (PETS'22) This repository holds the code and data for our PETS'22 paper titled 'From "Onion Not Found" to Gu

Lennart Oldenburg 3 May 04, 2022
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Multi-Scale Progressive Fusion Network for Single Image Deraining

Multi-Scale Progressive Fusion Network for Single Image Deraining (MSPFN) This is an implementation of the MSPFN model proposed in the paper (Multi-Sc

Kuijiang 128 Nov 21, 2022
OSLO: Open Source framework for Large-scale transformer Optimization

O S L O Open Source framework for Large-scale transformer Optimization What's New: December 21, 2021 Released OSLO 1.0. What is OSLO about? OSLO is a

TUNiB 280 Nov 24, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
Pytorch implementation of SELF-ATTENTIVE VAD, ICASSP 2021

SELF-ATTENTIVE VAD: CONTEXT-AWARE DETECTION OF VOICE FROM NOISE (ICASSP 2021) Pytorch implementation of SELF-ATTENTIVE VAD | Paper | Dataset Yong Rae

97 Dec 23, 2022
Open source person re-identification library in python

Open-ReID Open-ReID is a lightweight library of person re-identification for research purpose. It aims to provide a uniform interface for different da

Tong Xiao 1.3k Jan 01, 2023
A benchmark dataset for mesh multi-label-classification based on cube engravings introduced in MeshCNN

Double Cube Engravings This script creates a dataset for multi-label mesh clasification, with an intentionally difficult setup for point cloud classif

Yotam Erel 1 Nov 30, 2021
Registration Loss Learning for Deep Probabilistic Point Set Registration

RLLReg This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV

Felix Järemo Lawin 35 Nov 02, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness?

Adversrial Machine Learning Benchmarks This code belongs to the papers: Is RobustBench/AutoAttack a suitable Benchmark for Adversarial Robustness? Det

Adversarial Machine Learning 9 Nov 27, 2022