This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Overview

Introduction: X-Ray Report Generation

This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". Our work adopts x-ray (also including some history data for patients if there are any) as input, a CNN is used to learn the embedding features for x-ray, as a result, disease-state-style information (Previously, almost all work used detected disease embedding for input of text generation network which could possibly exclude the false negative diseases) is extracted and fed into the text generation network (transformer). To make sure the consistency of detected diseases and generated x-ray reports, we also create a interpreter to enforce the accuracy of the x-ray reports. For details, please refer to here.

Data we used for experiments

We use two datasets for experiments to validate our method:

Performance on two datasets

Datasets Methods BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L
Open-I Single-view 0.463 0.310 0.215 0.151 0.186 0.377
Multi-view 0.476 0.324 0.228 0.164 0.192 0.379
Multi-view w/ Clinical History 0.485 0.355 0.273 0.217 0.205 0.422
Full Model (w/ Interpreter) 0.515 0.378 0.293 0.235 0.219 0.436
MIMIC Single-view 0.447 0.290 0.200 0.144 0.186 0.317
Multi-view 0.451 0.292 0.201 0.144 0.185 0.320
Multi-view w/ Clinical History 0.491 0.357 0.276 0.223 0.213 0.389
Full Model (w/ Interpreter) 0.495 0.360 0.278 0.224 0.222 0.390

Environments for running codes

  • Operating System: Ubuntu 18.04

  • Hardware: tested with RTX 2080 TI (11G)

  • Software: tested with PyTorch 1.5.1, Python3.7, CUDA 10.0, tensorboardX, tqdm

  • Anaconda is strongly recommended

  • Other Libraries: Spacy, SentencePiece, nlg-eval

How to use our code for train/test

Step 0: Build your vocabulary model with SentencePiece (tools/vocab_builder.py)

  • Please make sure that you have preprocess the medical reports accurately.
  • We use the top 900 high-frequency words
  • We use 100 unigram tokens extracted from SentencePiece to avoid the out-of-vocabulary situation.
  • In total we have 1000 words and tokens. Update: You can skip step 0 and use the vocabulary files in Vocabulary/*.model

Step 1: Train the LSTM and/or Transformer models, which are just text classifiers, to obtain 14 common disease labels.

  • Use the train_text.py to train the models on your working datasets. For example, the MIMIC-CXR comes with CheXpert labels; you can use these labels as ground-truth to train a differentiable text classifier model. Here the text classifier is a binary predictor (postive/uncertain) = 1 and (negative/unmentioned) = 0.
  • Assume the trained text classifier is perfect and exactly reflects the medical reports. Although this is not the case, in practice, it gives us a good approximation of how good the generated reports are. Human evaluation is also needed to evalutate the generated reports.
  • The goals here are:
  1. Evaluate the performance of the generated reports by comparing the predicted labels and the ground-truth labels.
  2. Use the trained models to fine-tune medical reports' output.

Step 2: Test the text classifier models using the train_text.py with:

  • PHASE = 'TEST'
  • RELOAD = True --> Load the trained models for testing

Step 3: Transfer the trained model to obtain 14 common disease labels for the Open-I datasets and any dataset that doesn't have ground-truth labels.

  • Transfer the learned model to the new dataset by predicting 14 disease labels for the entire dataset by running extract_label.py on the target dataset. The output file is file2label.json
  • Split them into train, validation, and test sets (we have already done that for you, just put the file2label.json in a place where the NLMCXR dataset can see).
  • Build your own text classifier (train_text.py) based on the extracted disease labels (treat them as ground-truth labels).
  • In the end, we want the text classifiers (LSTM/Transformer) to best describe your model's output on the working dataset.

Step 4: Get additional labels using (tools/count_nounphrases.py)

  • Note that 14 disease labels are not enough to generate accurate reports. This is because for the same disease, we might have different ways to express it. For this reason, additional labels are needed to enhance the quality of medical reports.
  • The output of the coun_nounphrases.py is a json file, you can use it as input to the exising datasets such as MIMIC or NLMCXR.
  • Therefore, in total we have 14 disease labels + 100 noun-phrases = 114 disease-related topics/labels. Please check the appendix in our paper.

Step 5: Train the ClsGen model (Classifier-Generator) with train_full.py

  • PHASE = 'TRAIN'
  • RELOAD = False --> We trained our model from scratch

Step 6: Train the ClsGenInt model (Classifier-Generator-Interpreter) with train_full.py

  • PHASE = 'TRAIN'
  • RELOAD = True --> Load the ClsGen trained from the step 4, load the Interpreter model from Step 1 or 3
  • Reduce the learning rate --> Since the ClsGen has already converged, we need to reduce the learning rate to fine-tune the word representation such that it minimize the interpreter error.

Step 7: Generate the outputs

  • Use the infer function in the train_full.py to generate the outputs. This infer function ensures that no ground-truth labels and medical reports are being used in the inference phase (we used teacher forcing / ground-truth labels during training phase).
  • Also specify the threshold parameter, see the appendix of our paper on which threshold to choose from.
  • Final specify your the name of your output files.

Step 8: Evaluate the generated reports.

  • Use the trained text classifier model in step 1 to evaluate the clinical accuracy
  • Use the nlg-eval library to compute BLEU-1 to BLEU-4 scores and other metrics.

Our pretrained models

Our model is uploaded in google drive, please download the model from

Model Name Download Link
Our Model for MIMIC Google Drive
Our Model for NLMCXR Google Drive

Citation

If it is helpful to you, please cite our work:

@inproceedings{nguyen-etal-2021-automated,
    title = "Automated Generation of Accurate {\&} Fluent Medical {X}-ray Reports",
    author = "Nguyen, Hoang  and
      Nie, Dong  and
      Badamdorj, Taivanbat  and
      Liu, Yujie  and
      Zhu, Yingying  and
      Truong, Jason  and
      Cheng, Li",
    booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
    month = nov,
    year = "2021",
    address = "Online and Punta Cana, Dominican Republic",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.emnlp-main.288",
    doi = "10.18653/v1/2021.emnlp-main.288",
    pages = "3552--3569",
}

Owner
no name
no name
ilpyt: imitation learning library with modular, baseline implementations in Pytorch

ilpyt The imitation learning toolbox (ilpyt) contains modular implementations of common deep imitation learning algorithms in PyTorch, with unified in

The MITRE Corporation 11 Nov 17, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Related resources for our EMNLP 2021 paper

Plan-then-Generate: Controlled Data-to-Text Generation via Planning Authors: Yixuan Su, David Vandyke, Sihui Wang, Yimai Fang, and Nigel Collier Code

Yixuan Su 61 Jan 03, 2023
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
AFLFast (extends AFL with Power Schedules)

AFLFast Power schedules implemented by Marcel Böhme [email protected]

Marcel Böhme 380 Jan 03, 2023
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Fully Convolutional Networks for Semantic Segmentation by Jonathan Long*, Evan Shelhamer*, and Trevor Darrell. CVPR 2015 and PAMI 2016.

Fully Convolutional Networks for Semantic Segmentation This is the reference implementation of the models and code for the fully convolutional network

Evan Shelhamer 3.2k Jan 08, 2023
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Detectron2 for Document Layout Analysis

Detectron2 trained on PubLayNet dataset This repo contains the training configurations, code and trained models trained on PubLayNet dataset using Det

Himanshu 163 Nov 21, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
Transformer model implemented with Pytorch

transformer-pytorch Transformer model implemented with Pytorch Attention is all you need-[Paper] Architecture Self-Attention self_attention.py class

Mingu Kang 12 Sep 03, 2022
This is a JAX implementation of Neural Radiance Fields for learning purposes.

learn-nerf This is a JAX implementation of Neural Radiance Fields for learning purposes. I've been curious about NeRF and its follow-up work for a whi

Alex Nichol 62 Dec 20, 2022
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022