HW3 ― GAN, ACGAN and UDA

Overview

HW3 ― GAN, ACGAN and UDA

In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN and ACGAN for generating human face images, and the model of DANN for classifying digit images from different domains.

For more details, please click this link to view the slides of HW3.

Usage

To start working on this assignment, you should clone this repository into your local machine by using the following command.

git clone https://github.com/dlcv-spring-2019/hw3-
   
    .git

   

Note that you should replace with your own GitHub username.

Dataset

In the starter code of this repository, we have provided a shell script for downloading and extracting the dataset for this assignment. For Linux users, simply use the following command.

bash ./get_dataset.sh

The shell script will automatically download the dataset and store the data in a folder called hw3_data. Note that this command by default only works on Linux. If you are using other operating systems, you should download the dataset from this link and unzip the compressed file manually.

⚠️ IMPORTANT NOTE ⚠️
You should keep a copy of the dataset only in your local machine. DO NOT upload the dataset to this remote repository. If you extract the dataset manually, be sure to put them in a folder called hw3_data under the root directory of your local repository so that it will be included in the default .gitignore file.

Evaluation

To evaluate your UDA models in Problems 3 and 4, you can run the evaluation script provided in the starter code by using the following command.

python3 hw3_eval.py $1 $2
  • $1 is the path to your predicted results (e.g. hw3_data/digits/mnistm/test_pred.csv)
  • $2 is the path to the ground truth (e.g. hw3_data/digits/mnistm/test.csv)

Note that for hw3_eval.py to work, your predicted .csv files should have the same format as the ground truth files we provided in the dataset as shown below.

image_name label
00000.png 4
00001.png 3
00002.png 5
... ...

Submission Rules

Deadline

108/05/08 (Wed.) 01:00 AM

Late Submission Policy

You have a five-day delay quota for the whole semester. Once you have exceeded your quota, the credit of any late submission will be deducted by 30% each day.

Note that while it is possible to continue your work in this repository after the deadline, we will by default grade your last commit before the deadline specified above. If you wish to use your quota or submit an earlier version of your repository, please contact the TAs and let them know which commit to grade. For more information, please check out this post.

Academic Honesty

  • Taking any unfair advantages over other class members (or letting anyone do so) is strictly prohibited. Violating university policy would result in an F grade for this course (NOT negotiable).
  • If you refer to some parts of the public code, you are required to specify the references in your report (e.g. URL to GitHub repositories).
  • You are encouraged to discuss homework assignments with your fellow class members, but you must complete the assignment by yourself. TAs will compare the similarity of everyone’s submission. Any form of cheating or plagiarism will not be tolerated and will also result in an F grade for students with such misconduct.

Submission Format

Aside from your own Python scripts and model files, you should make sure that your submission includes at least the following files in the root directory of this repository:

  1. hw3_ .pdf
    The report of your homework assignment. Refer to the "Grading" section in the slides for what you should include in the report. Note that you should replace with your student ID, NOT your GitHub username.
  2. hw3_p1p2.sh
    The shell script file for running your GAN and ACGAN models. This script takes as input a folder and should output two images named fig1_2.jpg and fig2_2.jpg in the given folder.
  3. hw3_p3.sh
    The shell script file for running your DANN model. This script takes as input a folder containing testing images and a string indicating the target domain, and should output the predicted results in a .csv file.
  4. hw3_p4.sh
    The shell script file for running your improved UDA model. This script takes as input a folder containing testing images and a string indicating the target domain, and should output the predicted results in a .csv file.

We will run your code in the following manner:

bash ./hw3_p1p2.sh $1
bash ./hw3_p3.sh $2 $3 $4
bash ./hw3_p4.sh $2 $3 $4
  • $1 is the folder to which you should output your fig1_2.jpg and fig2_2.jpg.
  • $2 is the directory of testing images in the target domain (e.g. hw3_data/digits/mnistm/test).
  • $3 is a string that indicates the name of the target domain, which will be either mnistm, usps or svhn.
    • Note that you should run the model whose target domain corresponds with $3. For example, when $3 is mnistm, you should make your prediction using your "USPS→MNIST-M" model, NOT your "MNIST-M→SVHN" model.
  • $4 is the path to your output prediction file (e.g. hw3_data/digits/mnistm/test_pred.csv).

🆕 NOTE
For the sake of conformity, please use the python3 command to call your .py files in all your shell scripts. Do not use python or other aliases, otherwise your commands may fail in our autograding scripts.

Packages

Below is a list of packages you are allowed to import in this assignment:

python: 3.5+
tensorflow: 1.13
keras: 2.2+
torch: 1.0
h5py: 2.9.0
numpy: 1.16.2
pandas: 0.24.0
torchvision: 0.2.2
cv2, matplotlib, skimage, Pillow, scipy
The Python Standard Library

Note that using packages with different versions will very likely lead to compatibility issues, so make sure that you install the correct version if one is specified above. E-mail or ask the TAs first if you want to import other packages.

Remarks

  • If your model is larger than GitHub’s maximum capacity (100MB), you can upload your model to another cloud service (e.g. Dropbox). However, your shell script files should be able to download the model automatically. For a tutorial on how to do this using Dropbox, please click this link.
  • DO NOT hard code any path in your file or script, and the execution time of your testing code should not exceed an allowed maximum of 10 minutes.
  • If we fail to run your code due to not following the submission rules, you will receive 0 credit for this assignment.

Q&A

If you have any problems related to HW3, you may

Owner
grassking100
A researcher study in bioinformatics and deep learning. To see other repositories: https://bitbucket.org/grassking100/?sort=-updated_on&privacy=public.
grassking100
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

DV Lab 116 Dec 20, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
学习 python3 以来写的一些垃圾玩具……

和东哥做兄弟 Author: chiupam 版权 未经本人同意,仓库内所有资源文件,禁止任何公众号、自媒体、开发者进行任何形式的转载、发布、搬运。 声明 这不是一个开源项目,只是把 GitHub 当作一个代码的存储空间,本项目不接受任何开源要求。 仅用于学习研究,禁止用于商业用途,不能保证其合法性

Chiupam 67 Mar 26, 2022
This repository collects project-relevant Isabelle/HOL formalizations.

Isabelle/HOL formalizations related to the AuReLeE project Formalization of Abstract Argumentation Frameworks See AbstractArgumentation folder for the

AuReLeE project 1 Sep 10, 2022
Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara is a Python library that allows one to define, optimize, and efficiently evaluate mathematical expressions involving multi-dimensional arrays.

Aesara 898 Jan 07, 2023
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
Google Brain - Ventilator Pressure Prediction

Google Brain - Ventilator Pressure Prediction https://www.kaggle.com/c/ventilator-pressure-prediction The ventilator data used in this competition was

Samuele Cucchi 1 Feb 11, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
NeRF visualization library under construction

NeRF visualization library using PlenOctrees, under construction pip install nerfvis Docs will be at: https://nerfvis.readthedocs.org import nerfvis s

Alex Yu 196 Jan 04, 2023
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Phylogeny Partners

Phylogeny-Partners Two states models Instalation You may need to install the cython, networkx, numpy, scipy package: pip install cython, networkx, num

1 Sep 19, 2022
Rational Activation Functions - Replacing Padé Activation Units

Rational Activations - Learnable Rational Activation Functions First introduce as PAU in Padé Activation Units: End-to-end Learning of Activation Func

<a href=[email protected]"> 38 Nov 22, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022