Robust and Accurate Object Detection via Self-Knowledge Distillation

Related tags

Deep Learningudfa
Overview

Robust and Accurate Object Detection via Self-Knowledge Distillation

paper:https://arxiv.org/abs/2111.07239

Environments

  • Python 3.7
  • Cuda 10.1
  • Prepare dependency

Notes: We revise MMCV to adapt adversarial algorithms. Therefore we suggest that you prepare environments strictly as follows:

conda create -n udfa python=3.7
conda activate udfa
sh prepare_env.sh

Prepare datasets

  • VOC0712, download from http://host.robots.ox.ac.uk/pascal/VOC/, and place it under data directory

  • COCO2017, download from https://cocodataset.org/#download, and place it under data directory

  • The structure of datasets is shown as follows:

    structure of dataset

Train

VOC dataset

  • Generate GFLV2-R34 pretrained detector (served as teacher) on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_std.py 
    cd work_dirs/gflv2_r34_fpn_voc_std
    cp epoch_12.pth ../../weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using udfa on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_kdss.py --load-from weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using udfa with advprop on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_kdss1.py --load-from weights/gflv2_r34_voc_pre.pth
    
  • Training GFLV2-R34 using Det-AdvProp on PASCAL_VOC 0712:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_voc_mixbn.py --load-from weights/gflv2_r34_voc_pre.pth
    

COCO dataset

  • Generate GFLV2-R34 pretrained detector (served as teacher) on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_std.py 
    cd work_dirs/gflv2_r34_fpn_coco_std
    cp epoch_12.pth ../../weights/gflv2_r34_coco_pre.pth
    
  • Training GFLV2-R34 using udfa on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_kdss.py --load-from weights/gflv2_r34_coco_pre.pth
    
  • Training GFLV2-R34 using Det-AdvProp on COCO:

    python -m torch.distributed.launch --nproc_per_node=4  train.py --launcher pytorch --config configs/gflv2/gflv2_r34_fpn_coco_mixbn.py --load-from weights/gflv2_r34_coco_pre.pth
    

Test

  • Evlauate the clean AP or adversarial robustness on PASCAL_VOC 2007 test set:

    python -m torch.distributed.launch --nproc_per_node=4 test.py --launcher pytorch --configs/gflv2/gflv2_r34_fpn_voc_std.py  --checkpoint weights/gflv2_r34_voc_pre.pth --num_steps 0 --step_size 2 --eval mAP
    
  • Evlauate the clean AP or adversarial robustness on COCO 2017val set:

    python -m torch.distributed.launch --nproc_per_node=4 test.py --launcher pytorch --configs/gflv2/gflv2_r34_fpn_coco_std.py  --checkpoint weights/gflv2_r34_coco_pre.pth --num_steps 0 --step_size 2 --eval bbox
    

Acknowledgement

Our project is based on ImageCorruptions, MMDetection and MMCV.

Owner
Weipeng Xu
Weipeng Xu
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order Pooling.

Locus This repository is an open-source implementation of the ICRA 2021 paper: Locus: LiDAR-based Place Recognition using Spatiotemporal Higher-Order

Robotics and Autonomous Systems Group 96 Dec 15, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
This is the implementation of GGHL (A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection)

GGHL: A General Gaussian Heatmap Labeling for Arbitrary-Oriented Object Detection This is the implementation of GGHL 👋 👋 👋 [Arxiv] [Google Drive][B

551 Dec 31, 2022
[ICML 2020] "When Does Self-Supervision Help Graph Convolutional Networks?" by Yuning You, Tianlong Chen, Zhangyang Wang, Yang Shen

When Does Self-Supervision Help Graph Convolutional Networks? PyTorch implementation for When Does Self-Supervision Help Graph Convolutional Networks?

Shen Lab at Texas A&M University 106 Nov 11, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Parallel Tacotron2 Pytorch Implementation of Google's Parallel Tacotron 2: A Non-Autoregressive Neural TTS Model with Differentiable Duration Modeling

Keon Lee 170 Dec 27, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
Using deep learning to predict gene structures of the coding genes in DNA sequences of Arabidopsis thaliana

DeepGeneAnnotator: A tool to annotate the gene in the genome The master thesis of the "Using deep learning to predict gene structures of the coding ge

Ching-Tien Wang 3 Sep 09, 2022
CSPML (crystal structure prediction with machine learning-based element substitution)

CSPML (crystal structure prediction with machine learning-based element substitution) CSPML is a unique methodology for the crystal structure predicti

8 Dec 20, 2022
PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Inference pipeline for our participation in the FeTA challenge 2021.

feta-inference Inference pipeline for our participation in the FeTA challenge 2021. Team name: TRABIT Installation Download the two folders in https:/

Lucas Fidon 2 Apr 13, 2022
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022