Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

Overview

PWC

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows

WACV 2022 preprint:https://arxiv.org/abs/2107.12571

Abstract

Unsupervised anomaly detection with localization has many practical applications when labeling is infeasible and, moreover, when anomaly examples are completely missing in the train data. While recently proposed models for such data setup achieve high accuracy metrics, their complexity is a limiting factor for real-time processing. In this paper, we propose a real-time model and analytically derive its relationship to prior methods. Our CFLOW-AD model is based on a conditional normalizing flow framework adopted for anomaly detection with localization. In particular, CFLOW-AD consists of a discriminatively pretrained encoder followed by a multi-scale generative decoders where the latter explicitly estimate likelihood of the encoded features. Our approach results in a computationally and memory-efficient model: CFLOW-AD is faster and smaller by a factor of 10x than prior state-of-the-art with the same input setting. Our experiments on the MVTec dataset show that CFLOW-AD outperforms previous methods by 0.36% AUROC in detection task, by 1.12% AUROC and 2.5% AUPRO in localization task, respectively. We open-source our code with fully reproducible experiments.

BibTex Citation

If you like our paper or code, please cite its WACV 2022 preprint using the following BibTex:

@article{cflow_ad,
  title={CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows},
  author={Gudovskiy, Denis and Ishizaka, Shun and Kozuka, Kazuki},
  journal={arXiv:2107.12571},
  year={2021}
}

Installation

Install all packages with this command:

$ python3 -m pip install -U -r requirements.txt

Datasets

We support MVTec AD dataset for anomaly localization in factory setting and Shanghai Tech Campus (STC) dataset with surveillance camera videos. Please, download dataset from URLs and extract to data folder or make symlink to that folder or change default data path in main.py).

Code Organization

  • ./custom_datasets - contains dataloaders for MVTec and STC
  • ./custom_models - contains pretrained feature extractors

Training Models

  • Run code by selecting class name, feature extractor, input size, flow model etc.
  • The commands below should reproduce our reference MVTec results using WideResnet-50 extractor:
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name bottle
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name cable
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name capsule
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name carpet
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name grid
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name hazelnut
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name leather
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name metal_nut
python3 main.py --gpu 0 --pro -inp 256 --dataset mvtec --class-name pill
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name screw
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name tile
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name toothbrush
python3 main.py --gpu 0 --pro -inp 128 --dataset mvtec --class-name transistor
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name wood
python3 main.py --gpu 0 --pro -inp 512 --dataset mvtec --class-name zipper

Testing Pretrained Models

  • Download pretrained weights from Google Drive
  • The command below should reproduce MVTec results using light-weight MobileNetV3L extractor (AUROC, AUPRO) = (98.38%, 94.72%):
python3 main.py --gpu 0 --pro -enc mobilenet_v3_large --dataset mvtec --action-type norm-test -inp INPUT --class-name CLASS --checkpoint PATH/FILE.PT

CFLOW-AD Architecture

CFLOW-AD

Reference CFLOW-AD Results for MVTec

CFLOW-AD

Owner
Denis
Machine and Deep Learning Researcher
Denis
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
Code for "LoRA: Low-Rank Adaptation of Large Language Models"

LoRA: Low-Rank Adaptation of Large Language Models This repo contains the implementation of LoRA in GPT-2 and steps to replicate the results in our re

Microsoft 394 Jan 08, 2023
A python module for scientific analysis of 3D objects based on VTK and Numpy

A lightweight and powerful python module for scientific analysis and visualization of 3d objects.

Marco Musy 1.5k Jan 06, 2023
Deep Learning Algorithms for Hedging with Frictions

Deep Learning Algorithms for Hedging with Frictions This repository contains the Forward-Backward Stochastic Differential Equation (FBSDE) solver and

Xiaofei Shi 3 Dec 22, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
PASTRIE: A Corpus of Prepositions Annotated with Supersense Tags in Reddit International English

PASTRIE Official release of the corpus described in the paper: Michael Kranzlein, Emma Manning, Siyao Peng, Shira Wein, Aryaman Arora, and Nathan Schn

NERT @ Georgetown 4 Dec 02, 2021
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
ARAE-Tensorflow for Discrete Sequences (Adversarially Regularized Autoencoder)

ARAE Tensorflow Code Code for the paper Adversarially Regularized Autoencoders for Generating Discrete Structures by Zhao, Kim, Zhang, Rush and LeCun

19 Nov 12, 2021
City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Code

City-Scale Multi-Camera Vehicle Tracking Guided by Crossroad Zones Requirements Python 3.8 or later with all requirements.txt dependencies installed,

88 Dec 12, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022