Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

Overview

CDVD-TSPNL

LICENSE Python PyTorch

Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity

By Jinshan Pan, Boming Xu, and Haoran Bai

This repository is the official PyTorch implementation of "Cascaded Deep Video Deblurring Using Temporal Sharpness Prior and Non-local Spatial-Temporal Similarity"

Updates

[2022-02-08] Training code and Testing code are available!
[2022-02-07] Paper coming soon...

Experimental Results

Quantitative evaluations on the video deblurring dataset [11] in terms of PSNR and SSIM. All the comparison results are generated using the publicly available code. All the restored frames instead of randomly selected 30 frames from each test set [11] are used for evaluations. DVD

Quantitative evaluations on the GoPro dataset [43] in terms of PSNR and SSIM. * denotes the reported results from [47]. GOPRO

Quantitative evaluations on the BSD video deblurring dataset [5] in terms of PSNR and SSIM. BSD

Dependencies

  • Linux (Tested on Ubuntu 18.04)
  • Python 3 (Recommend to use Anaconda)
  • PyTorch 1.8.0: conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
  • Install dependent packages :pip install -r requirements.txt
  • Install CDVD-TSPNL :python setup.py develop

Get Started

Pretrained models

  • Models are available in './experiments/pretrained_models/'

Dataset Organization Form

If you prepare your own dataset, please follow the following form like GOPRO/DVD:

|--dataset  
    |--blur  
        |--video 1
            |--frame 1
            |--frame 2
                :  
        |--video 2
            :
        |--video n
    |--gt
        |--video 1
            |--frame 1
            |--frame 2
                :  
        |--video 2
        	:
        |--video n

Training

  • FlowNet pretrained model has been downloaded in './pretrained_models/flownet/'
  • Download training dataset like above form.
  • Run the following commands:
Single GPU
python basicsr/train.py -opt options/train/Deblur/train_Deblur_GOPRO.yml
Multi-GPUs
python -m torch.distributed.launch --nproc_per_node=8 --master_port=4321 basicsr/train.py -opt options/train/Deblur/train_Deblur_GOPRO.yml --launcher pytorch

Testing

  • Model are available in './experiments/pretrained_models/'
  • Organize your dataset(GOPRO/DVD/BSD) like the above form.
  • Run the following commands:
python basicsr/test.py -opt options/test/Deblur/test_Deblur_GOPRO.yml
  • The deblured result will be in './results/'.
  • We calculate PSNRs/SSIMs following [Here]
  • If we set flip_seq: Ture in config files, testing code will use self-ensemble strategy.(CDVDTSPNL+)

Citation

Owner
hippopmonkey
hippopmonkey
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR

Official implementation for paper "Advancing Self-supervised Monocular Depth Learning with Sparse LiDAR"

Ziyue Feng 72 Dec 09, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Make a Turtlebot3 follow a figure 8 trajectory and create a robot arm and make it follow a trajectory

HW2 - ME 495 Overview Part 1: Makes the robot move in a figure 8 shape. The robot starts moving when launched on a real turtlebot3 and can be paused a

Devesh Bhura 0 Oct 21, 2022
Official implementation of Long-Short Transformer in PyTorch.

Long-Short Transformer (Transformer-LS) This repository hosts the code and models for the paper: Long-Short Transformer: Efficient Transformers for La

NVIDIA Corporation 198 Dec 29, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
PyTorch implementation of popular datasets and models in remote sensing

PyTorch Remote Sensing (torchrs) (WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Re

isaac 222 Dec 28, 2022
SPT_LSA_ViT - Implementation for Visual Transformer for Small-size Datasets

Vision Transformer for Small-Size Datasets Seung Hoon Lee and Seunghyun Lee and Byung Cheol Song | Paper Inha University Abstract Recently, the Vision

Lee SeungHoon 87 Jan 01, 2023
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
A data-driven maritime port simulator

PySeidon - A Data-Driven Maritime Port Simulator 🌊 Extendable and modular software for maritime port simulation. This software uses entity-component

6 Apr 10, 2022
MvtecAD unsupervised Anomaly Detection

MvtecAD unsupervised Anomaly Detection This respository is the unofficial implementations of DFR: Deep Feature Reconstruction for Unsupervised Anomaly

0 Feb 25, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
ML powered analytics engine for outlier detection and root cause analysis.

Website • Docs • Blog • LinkedIn • Community Slack ML powered analytics engine for outlier detection and root cause analysis ✨ What is Chaos Genius? C

Chaos Genius 523 Jan 04, 2023
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022