InvTorch: memory-efficient models with invertible functions

Related tags

Deep Learninginvtorch
Overview

InvTorch: Memory-Efficient Invertible Functions

This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible functions. So, not only the intermediate activations will be released from memory. The input tensors get deallocated and recomputed later using the inverse function only in the backward pass. This is useful in extreme situations where more compute is traded with memory. However, there are few caveats to consider which are detailed here.

Installation

InvTorch has minimal dependencies. It only requires PyTorch version 1.10.0 or later.

conda install pytorch==1.10.0 torchvision torchaudio cudatoolkit=11.3 -c pytorch
pip install invtorch

Basic Usage

The main module that we are interested in is InvertibleModule which inherits from torch.nn.Module. Subclass it to implement your own invertible code.

import torch
from torch import nn
from invtorch import InvertibleModule


class InvertibleLinear(InvertibleModule):
    def __init__(self, in_features, out_features):
        super().__init__(invertible=True, checkpoint=True)
        self.weight = nn.Parameter(torch.randn(out_features, in_features))
        self.bias = nn.Parameter(torch.randn(out_features))

    def function(self, inputs):
        outputs = inputs @ self.weight.T + self.bias
        requires_grad = self.do_require_grad(inputs, self.weight, self.bias)
        return outputs.requires_grad_(requires_grad)

    def inverse(self, outputs):
        return (outputs - self.bias) @ self.weight.T.pinverse()

Structure

You can immediately notice few differences to the regular PyTorch module here. There is no longer a need to define forward(). Instead, it is replaced with function(*inputs). Additionally, it is necessary to define its inverse function as inverse(*outputs). Both methods can only take one or more positional arguments and return a torch.Tensor or a tuple of outputs which can have anything including tensors.

Requires Gradient

function() must manually call .requires_grad_(True/False) on all output tensors. The forward pass is run in no_grad mode and there is no way to detect which output need gradients without tracing. It is possible to infer this from requires_grad values of the inputs and self.parameters(). The above code uses do_require_grad() which returns True if any input did require gradient.

Example

Now, this model is ready to be instantiated and used directly.

x = torch.randn(10, 3)
model = InvertibleLinear(3, 5)
print('Is invertible:', model.check_inverse(x))

y = model(x)
print('Output requires_grad:', y.requires_grad)
print('Input was freed:', x.storage().size() == 0)

y.backward(torch.randn_like(y))
print('Input was restored:', x.storage().size() != 0)

Checkpoint and Invertible Modes

InvertibleModule has two flags which control the mode of operation; checkpoint and invertible. If checkpoint was set to False, or when working in no_grad mode, or no input or parameter has requires_grad set to True, it acts exactly as a normal PyTorch module. Otherwise, the model is either invertible or an ordinary checkpoint depending on whether invertible is set to True or False, respectively. Those, flags can be changed at any time during operation without any repercussions.

Limitations

Under the hood, InvertibleModule uses invertible_checkpoint(); a low-level implementation which allows it to function. There are few considerations to keep in mind when working with invertible checkpoints and non-materialized tensors. Please, refer to the documentation in the code for more details.

Overriding forward()

Although forward() is now doing important things to ensure the validity of the results when calling invertible_checkpoint(), it can still be overridden. The main reason of doing so is to provide a more user-friendly interface; function signature and output format. For example, function() could return extra outputs that are not needed in the module outputs but are essential for correctly computing the inverse(). In such case, define forward() to wrap outputs = super().forward(*inputs) more cleanly.

TODOs

Here are few feature ideas that could be implemented to enrich the utility of this package:

  • Add more basic operations and modules
  • Add coupling and interleave -based invertible operations
  • Add more checks to help the user in debugging more features
  • Allow picking some inputs to not be freed in invertible mode
  • Context-manager to temporarily change the mode of operation
  • Implement dynamic discovery for outputs that requires_grad
  • Develop an automatic mode optimization for a network for various objectives
You might also like...
A memory-efficient implementation of DenseNets

efficient_densenet_pytorch A PyTorch =1.0 implementation of DenseNets, optimized to save GPU memory. Recent updates Now works on PyTorch 1.0! It uses

Official and maintained implementation of the paper
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Lowest memory consumption and second shortest runtime in NTIRE 2022 challenge on Efficient Super-Resolution

FMEN Lowest memory consumption and second shortest runtime in NTIRE 2022 on Efficient Super-Resolution. Our paper: Fast and Memory-Efficient Network T

XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

Efficient-GlobalPointer - Pytorch Efficient GlobalPointer
Efficient-GlobalPointer - Pytorch Efficient GlobalPointer

引言 感谢苏神带来的模型,原文地址:https://spaces.ac.cn/archives/8877 如何运行 对应模型EfficientGlobalPoi

Releases(v0.5.0)
Owner
Modar M. Alfadly
Deep learning researcher interested in understanding neural networks
Modar M. Alfadly
Official Implementation of DE-CondDETR and DELA-CondDETR in "Towards Data-Efficient Detection Transformers"

DE-DETRs By Wen Wang, Jing Zhang, Yang Cao, Yongliang Shen, and Dacheng Tao This repository is an official implementation of DE-CondDETR and DELA-Cond

Wen Wang 41 Dec 12, 2022
Simultaneous Demand Prediction and Planning

Simultaneous Demand Prediction and Planning Dependencies Python packages: Pytorch, scikit-learn, Pandas, Numpy, PyYAML Data POI: data/poi Road network

Yizong Wang 1 Sep 01, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Notification Triggers for Python

Notipyer Notification triggers for Python Send async email notifications via Python. Get updates/crashlogs from your scripts with ease. Installation p

Chirag Jain 17 May 16, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
A Python library for unevenly-spaced time series analysis

traces A Python library for unevenly-spaced time series analysis. Why? Taking measurements at irregular intervals is common, but most tools are primar

Datascope Analytics 516 Dec 29, 2022
Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue

Realtime Unsupervised Depth Estimation from an Image This is the caffe implementation of our paper "Unsupervised CNN for single view depth estimation:

Ravi Garg 227 Nov 28, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
[NeurIPS 2020] Official Implementation: "SMYRF: Efficient Attention using Asymmetric Clustering".

SMYRF: Efficient attention using asymmetric clustering Get started: Abstract We propose a novel type of balanced clustering algorithm to approximate a

Giannis Daras 46 Dec 22, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
The best solution of the Weather Prediction track in the Yandex Shifts challenge

yandex-shifts-weather The repository contains information about my solution for the Weather Prediction track in the Yandex Shifts challenge https://re

Ivan Yu. Bondarenko 15 Dec 18, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Machine Learning From Scratch. Bare bones NumPy implementations of machine learning models and algorithms with a focus on accessibility. Aims to cover everything from linear regression to deep learning.

Machine Learning From Scratch About Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The purpose

Erik Linder-Norén 21.8k Jan 09, 2023
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022